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Abstract: Panel data can be characterized by complex error structures.  

Heteroskedasticity, serial correlation, and cross-sectional dependence are all likely present in 

many empirical applications. The presence of these nonspherical errors can generate 

inefficiency in coefficient estimation and bias in the estimation of standard errors.  

Unfortunately, robust estimators that accommodate all three sources of nonspherical error 

behaviour do not exist.  This creates a confusing situation for researchers using panel data.  On 

the one hand, there is a plethora of panel data estimators available from statistical software 

packages like EViews, LIMDEP, RATS, SAS, Stata, TSP, and others.  On the other hand, the 

finite sample performances of these estimators are not well known.  Thus, it is not clear which 

estimator one should use in a given research situation. To address this situation, Reed and Ye 

(2011) performed an extensive set of Monte Carlo analyses to measure the finite-sample 

performance of a large number of estimators in “realistic data environments.”  Their analysis 

compared estimator performance on two dimensions: (i) efficiency and (ii) coverage rates; 

leading to a series of recommendations regarding the “best” panel data estimator to use in 

specific data environments.  The paper has been relatively well-cited in Web of Science. 

Unfortunately, there is a flaw in their Monte Carlo design.  Our research (i) corrects the flaw in 

their Monte Carlo simulation design; (ii) replicates their analysis; and (iii) identifies the extent 

to which this flaw affects their recommendations.   
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1.1. Introduction 

Modeling cross-section and serial dependence in panel data is motivated by strong 

evidence of such complications in the context of panel models. Regular interactions among peer 

units such as economic agents, unobserved common shocks and factors, and the consistency of 

individual units’ behaviour over time (adaptive decision making process) are examples of 

potential sources of error dependence – among and within units - in models using panel data. 

Even though unobserved time-constant influences could be addressed by heterogeneous 

parameters (intercepts and slopes), the residuals independence hypothesis may still be violated 

due to time-varying random effects that persist for more than a single period (Skrondal and 

Rabe-Hesketh, 2008).  

These complex error structures, if not properly handled, may result in serious 

consequences including, but not limited to, biased coefficient estimates
1
, inaccurate hypothesis 

testing, erroneous statistical inference, and in fine misleading analyses and policy 

recommendations. In the literature, discussions about sources and consequences of cross-units 

and serial correlation of panel model residuals can be found in Kézdi (2004), Hoechle (2007), 

Petersen (2009), Sarafidis and Wansbeek (2012), and Chudik and Pesaran (2011), to name but a 

few relatively recent works.  

The need for panel estimators that are robust to cross-sectional dependence and/or serial 

correlation has been met with an abundance of such estimators proposed in the literature and 

programmed in statistical packages. Estimators robust to both cross-sectional dependence and 

serial correlation or to either one of the two exist. Among earlier researchers interested in 

modelling these complications are Zellner (1962, 1963), Zellner and Huang (1963), Zellner and 

Theil (1962), and Parks (1967). Additionally, there are a whole new set of sophisticated 

estimators when handling panel data characterized by cross-sectional and serial correlation. More 

recent treatments building on flaws and limitations of the earlier attempts include Pesaran and 

Smith (1995), Beck and Katz (1995), Driscoll and Kraay (1998), Cameron et al. (2006, 2009, 

                                                 
1
 Coefficient estimates are biased only if the source of dependence is significantly correlated with at least 

one covariate. If this is not the case, coefficient estimates will be consistent.  



 

Page | 2  

 

2011), Bond and Eberhardt (2009), or Kapetanios et al. (2011). Various panel estimators robust 

to serial and cross-sectional correlation are proposed, with different underlying assumptions 

about the data structure. Though these necessary assumptions are critical for estimating and 

diagnosing panel models, they may be considered too strong when applied to general forms of 

relationships in the error terms characterized by serial correlation and cross-section dependence.  

As a result, the plethora of robust panel estimators may appear to be good news for 

researchers using panel models. For those having little knowledge or an unclear idea of the 

implications of the complicated errors on the output produced by statistical packages, there are 

many robust estimators to choose from. Yet, for researchers aware of these implications, this 

situation poses another problem of estimator selection. At least two motives could be invoked as 

evidence for this problem: (i) simulation work has provided evidence of performance differences 

in the proposed estimators, and (ii) no straightforward rule to guide users in the estimator 

selection exists. While the first motive is a direct result of differences in underlying assumptions 

used for different estimators, the second constitutes a limit for many applied econometric 

investigations. In many instances, interest is mostly focussed on differences between estimators’ 

relative performances while the concern about the optimal choice criteria is limited.   

A recent attempt to compare panel data estimators was made by Reed and Ye (2011). A 

benefit of their study is that they provided a framework and a point of comparison for evaluating 

panel data estimators.  A deficiency of their study was that they did not include many recent 

panel data estimators. Another deficiency was that they introduced an error in their data 

simulation procedures that calls into question their results. I begin by replicating their study.  I do 

this both (i) to gauge the consequences of their mistake, and (ii) to calibrate my own efforts at 

simulating panel data estimators in the presence of cross-sectional and serial correlation. 

The remaining of the paper is organised as follows. Section 2 presents the original and 

modified experimental designs. The output under both experimental designs is presented in 

Section 3. I undertake a comparison of the implications of the two experimental designs in 

Section 4 to attempt to validate Reed and Ye’s (2011) recommendations. Section 5 concludes.  
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1.2. Experimental design: old vs. new versions 

1.2.1: Brief review and criticism of the original experimental design 

The experimental design in Reed and Ye (2011) partially followed the traditional practice 

of simulation in empirical econometrics. Altogether, the experiments were implemented in the 

following three steps.  

(i) The first step consisted in generating a series of dependent data using a pre-

determined model specification - or in other terms the data generating process 

(DGP), exogenous covariates, and a priori coefficient and disturbance parameters 

generally provided for by the researcher. This step guaranteed that the 

experiments are controlled.  

(ii) In the second step, the same covariates were regressed on the generated dependent 

variable, using the same model specification.  

(iii) These two first steps were iterated a large enough number of time so to allow for a 

realistic interpretation of estimated parameters’ finite properties in the third step.  

In Reed and Ye (2011), the DGP was a simple static panel model with single covariate. 

The originality of their approach was that the model independent variable, intercept and residuals 

parameters were dataset-specific rather than guesses by the researchers as we usually come 

across in empirical research. For this purpose, a total of four different macro-economic datasets 

of various characteristics (level and growth rates) and geographic coverage (US datasets at State 

level, and worldwide datasets at country level) are used, suggesting a rich assortment of 

associations among data points across and within individuals in time. This forms the ground for 

the authors’ claim that their generated datasets looked like a “real-world” ones. Key technical 

details of Reed and Ye (2011) are presented in the next sub-sections, followed by the major 

criticism of the approached adopted by the authors. 

a. Construction of data specific inputs  

As noted in the paragraph above, the regressor, the intercept and error variance 

covariance matrix used to run simulations in Reed and Ye (2011) were dataset-specific. Different 

data sets are used to construct these simulation inputs following an identical procedure. For a 
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given data set and panel dimension N (number of units) and T (number of time periods) with N 

and T less than or equal to the total number of individual and time periods in that data set, 

multiple static panel fixed effects regressions with a single exogenous covariate were run using 

successive data slices or windows of length T for each individual
2
. The residuals from these 

regressions were collected and used to form the simulation disturbance parameters. The 

dependent variables on the one hand and the exogenous covariates on the other were averaged 

across the slices (see equations (2) and (3) below) to compute the DGP intercept parameter. 

Model (1) describes each window’s treatment at this preliminary stage of the 

experimental design.  

Yit = βXit + uit       

µi +   εit         

uit     =   or        (1) 

µi + ηt +  εit         

 εit = ρεi,t-1 + rit     

where Yit is the NTx1 vector of the dependent variable observed on i = 1, 2, …, N individuals 

over time periods t = 1, 2, …, T; Xit is a NTx1 vector of observed deterministic regressor values; 

β is the slope coefficient, uit is the error term including unobserved fixed or random effects; µi is 

the individual fixed or random effects; ηt is the time specific effects; εit is the error term assumed 

autocorrelated of first order; ρ is the common autocorrelation coefficient of εit, and rit is a white 

noise. 

 Both specifications of the error decomposition above were adopted as separate 

experiments with each data set and a given pair of panel individual and time dimensions. 

Averages of the regressands and the regressors were calculated for each individual i over 

the different windows as: 

     
 

 
    

 
   ,     = (    ,       ,…,               (2) 

and           

  
   

 

 
    

 
   ,     = (    ,       ,…,               (3) 

                                                 
2
 A total maximum of 31 regressions for each set of N and T are run with each data set at this step. 
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The simulation intercept is the difference            
      where    is the only 

parameter created by the researchers.   
  is used as regressor for the simulated data sets.   

The simulation disturbance variance covariance matrix NT construction follows the 

Park’s (1967) structure as the direct product of averaged matrices of cross-sectional and serial 

correlations, respectively denoted by   and   , and computed as below.  

 
NT  

       (4) 
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All parameters in   and   were estimated using the residuals of OLS regressions of 

model (1) on data slices mentioned above assuming first order serially correlated residuals. 

Specifically, a consistent way to estimate  coefficients averaged to get  suggested in Greene 

(2003, p 326) uses the following expression with OLS innovations
îte . 
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Furthermore, r,ij  was calculated as by averaging the sample correlations between 

individuals i and j’s residuals 
îtr  and 

ĵtr arrived at by Prais-transforming model (1).  

b. Experimental parameters of interest 

The central parameter of interest for analysis purposes in Reed and Ye (2011) was the 

slope coefficient    of   
  in the model described below. 
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                          (5)    

 

and            

 

eit = ρei,t-1 + vit          

where     is the first order auto correlated residuals with NT  described above as variance 

covariance matrix, and vit is assumed to be a white noise.  .  

The interest lied in the precision with which    could be estimated, and the relative 

efficiency of its estimation with regards to a number of characteristics of the experimental 

disturbance term. The experiments covered eleven estimators of   . The precision of a given 

estimator was defined as the 95 per cent coverage rate measured by the percentage of times the 

hypothesis test of the equality between the true and experiment-based values of    failed to 

reject the null hypothesis out of a given number of trials. Denoting by L the number of trials in a 

given experiment, efficiency is computed using the formula below.  
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where ( )l

kb is the value of kb  for the reference estimator (here OLS) at the l
th

 trial, ( )ˆ l

kb is 

the value of kb  for the estimator that is being compared to the reference.  

A value of efficiency greater (less) than 100 characterizes an estimator that is less (more) 

efficient than the reference estimator (see, for example, Beck and Katz 1995). Likewise, a value 

of coverage significantly below 95 is an indication of poor confidence interval construction.  

Three main features of the generated data sets were used to analyse and interpret the 

experimental outcomes. These were the N-T ratio, the common first order autocorrelation 

coefficient and the degree of heteroscedasticity (HETCOEF) of the OLS disturbances term from 

model (5). The computation of a consistent estimate of ρ,   (RHOHAT) in the experiments 

followed the formula below proposed in Greene (2003, p 326).  
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where 
îte is the residuals series from the OLS re-estimation of the DGP equation with simulated 

data. 

The HETCOEF parameter was determined as the ratio of the first and third quintiles of 

the estimate of population variances of the residuals eit from model (5). This indicator captures 

the degree of heteroscedasticity in the error term of the simulated data. Higher values of 

HETCOEF might be associated with higher distortions in the hypothesis tests conclusions and 

the coefficients confidence intervals due to inaccurate estimates of coefficients’ standard errors.   

Table 1: Features of estimators’ residuals modeled. 

No Estimator Features of the residuals modeled 

 From Stata 

Estimator 1 OLS Independent 

Estimator 2 OLS Heteroscedasticity 

Estimator 3 OLS Heteroscedasticity, serial correlation 

Estimator 4 OLS Heteroscedasticity, cross-sectional dependence 

Estimator 5 FGLS Groupwise heteroscedasticity 

Estimator 6 FGLS Groupwise heteroscedasticity, serial correlation 

Estimator 7 FGLS (Parks)   

Estimator 8 PCSE (Parks)   

 From EViews 

Estimator 9 FGLS 
Weight = Groupwise heteroscedasticity; Covariance = 

Heteroscedasticity, Cross-sectional dependence 

Estimator 10 FGLS 
Weight = Groupwise heteroscedasticity; Covariance = 

Heteroscedasticity, Serial correlation 

Estimator 11 FGLS 
Weight = Groupwise heteroscedasticity;  Covariance = 

Heteroscedasticity 

Source: Reed and Ye (2011) 

Experiments in Reed and Ye (2011) were conducted using 11 different static panel 

estimators. The standard OLS estimator was taken as the reference against which the 
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performance (in efficiency terms) of the remaining ten other estimators were compared.  

All the estimators assessed are incorporated in Stata or Eviews among other popular 

statistical packages. However, specific treatments of these estimators by Stata and Eviews 

procedures were adopted in the experiments. Details of the residuals’ features accounted for by 

each estimator assessed are described in Table 1.  

c. Criticism of the initial experimental design 

Reed and Ye (2011)’s investigation resulted in interesting findings as we will discuss 

below. Nonetheless, we find that their experimental design might be subject to a well-grounded 

criticism in connection with their construction of the independent variable used for simulation 

purposes. Equation (3) systematically exaggerates the degree of serial correlation in the 

regressor. When the error terms are serially correlated, the serial correlation in the regressor 

affects the variance of its OLS coefficient estimator variance.  The following relationship 

connects the variance of OLS slope estimator characterised by first order serial correlation of 

both the error term and the regressor,             , on the one hand, and that of the usual OLS 

slope estimator,           , on the other (see Gujarati 2004, p 452).  

                         
    

    
  

where r and ρ denote the first order serial correlation coefficients of the regressor and the 

error term respectively.  

Therefore, exaggerating the serial correlation in the regressor would worsen the bias in 

the estimated slope standard error, thereby making the conclusions of analyses based on the 

accuracy of the confidence interval construction related to the rejection rates and coverage levels 

misleading.   

1.2.2. Modified experimental design  

To address the main experimental design flaw identified above, two alternatives exist, of 

which one is preferred over the other and employed in this paper. One possibility is to keep the 

constructed independent variable and address this complication in subsequent steps of the 

experiments. However, we choose to maintain the focus on the structure of the error term, and 



 

Page | 9  

 

would prefer avoiding further complications whenever possible. Therefore, we favour the other 

approach consisting in constructing a regressor without exaggerating its degree of serial 

correlation. Practically, we perform this method by randomly selecting one of the data windows 

formed in the data specific parameters generation step to substitute the original version of the 

regressor. This process does not add further correlation in the regressor used for simulation 

purposes.      

1.3. Description of replicated and redesigned experiments’ output 

In Reed and Ye (2011), a total of 144 experiments were implemented with both 

formulations of model (1). Of these experiments, 80 used data sets characterized by N≤T, and 64 

were conducted with data sets where N>T. Experiments were carried out with eight different 

datasets, different N-T combinations formed with 6 different individual dimension (N) values (5, 

10, 20, 48, 50 and 77) and 4 different time dimension (T) values (10, 15, 20 and 25). We have 

fully replicated the experiments twice; once in the same conditions, namely the model 

specifications, the experimental design, the data sets and the panel individual and time 

dimensions; and once with the sole difference in the construction of the regressor used for 

simulation purposes that avoids exaggerating serial correlation. The results of these replications 

are presented below in light of the original output. 

1.3.1. Relative efficiency of estimators 

Table 2 contains statistics about estimators’ performances on efficiency grounds in three 

panels, corresponding to the original performances (panel a) as reported by Reed and Ye (2011), 

the replicated performances (panel b) with unchanged experimental design, and the redesigned 

performances (panel c) after reconstructing the dependent variable. 

The exact replications of efficiencies are very close to the original experiments results 

when considering the actual efficiency figures, or the number of experiments where OLS is less 

efficient. The only differences observed relate to estimators 6 (when N>T) and 7 (when N≤T) for 

which very slight efficiency gains are observed on the one side, and for estimators 8 and 6 (N>T) 

that dominate more often OLS on efficiency grounds in the replicated experiments.  
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Table 2: Original, replicated and redesigned relative efficiency statistics.  

 

Average Efficiency 

Percentage of experiments 

where estimator is more 

efficient than OLS 

 
N<=T N>T N<=T N>T 

a.     Original output 

Estimator 5/9/10/11 95.2 82.9 58.8 84.4 

Estimator 6 95.1 83.1 71.3 79.7 

Estimator 7 73.9 -- 96.3 -- 

Estimator 8 100.8 101.0 62.5 51.6 

b.     Replicated experiments 

Estimator 5/9/10/11 95.2 82.9 58.8 84.4 

Estimator 6 95.1 82.6 71.3 81.3 

Estimator 7 73.7 -- 96.3 -- 

Estimator 8 100.8 101.0 63.8 57.8 

c.     Redesigned experiments 

Estimator 5/9/10/11 92.5 76.9 68.8 89.1 

Estimator 6 79.5 70.7 85.0 90.6 

Estimator 7 62.0 -- 100.0 -- 

Estimator 8 86.4 91.8 71.3 71.9 

Source: Reed and Ye (2011) and experiments replications 

However, after the regressior is reconstructed, considerable efficiency gains are recorded 

for all estimators irrespective of whether N is larger or less than T. And the frequencies of trials 

where the estimators are more efficient than OLS substantially increase for all estimators. This 

result reveals the significance of the sensitivity of the efficiency indicator - and indirectly the 

slope coefficient estimate - to the degree of serial correlation in the regressor.  

1.3.2. Confidence interval precision 

Table 3 summarises precision indices for all estimator under the original (panel a.), exact 

replication (panel b.) and adjusted replication (panel c.) experimental designs. Our replications of 

the confidence interval precisions with the unchanged experimental design perfectly match the 

original results when the individual dimension of simulated panel data sets is not greater than the 

time dimension. Coverage rates and the absolute gap with the 95 percent theoretical threshold are 
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correctly reproduced for all estimators. Furthermore, when the time dimension is dominated by 

the individual dimension, differences exist between replicated and original confidence internal 

precisions but they are within acceptable ranges. Overall, rejection rates decrease by .9 

(estimator 3) to 1.8 (estimator 4) percentage points while increases in the gap with the theoretical 

confidence level by generally the same order for a given estimator are observed. 

The impact of the experimental design adjustment for the earlier discussed flaw on the 

confidence internal precision indicators is substantial. Subsequent to the adjustment, rejection 

rates decrease for all estimators. When N is less than or equal to T, the highest improvements are 

associated with estimator 10, OLS, estimator 5 and estimator 3 (gains range from 4.0 to 5.7 

percentage points for these estimators) and the lowest precision improvement (.9 percentage 

point) is observed for FGLS (Parks).  When N is larger than T, OLS stands out with the precision 

gain, followed by estimators 4, 5 and 8.  

These differences in the coverage rates improvements indicate that on average, the 

impact of the regressor serial correlation exaggeration has been especially significant on those 

estimators that gain more under the experimental redesign.  

1.4. Further re-examination of estimators’ performances  

1.4.1. Assessment of the original recommendations 

A major question we investigate in this paper is whether the readjustment of the 

experimental design has altered the desirability of some estimators over others. That is, we want 

to examine the validity of recommendations formulated by Reed and Ye (2011) after replacing 

their regressor contaminated with some extra serial correlation following construction. This is 

what we do in this section that re-assesses the initial recommendations resulting from the original 

experiments.   
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Table 3: Replicated and redesigned confidence interval precision. 

 

Estimator 

N<=T N>T 

Coverage |95-Coverage| Coverage |95-Coverage| 

  a. Original output 

Estimator 1 73.6 21.9 74.2 21.9 

Estimator 2 73.7 21.8 77.9 18.8 

Estimator 3 83.5 11.6 91.8 3.9 

Estimator 4 72.7 22.5 74 21.3 

Estimator 5 69.8 25.6 72.6 22.9 

Estimator 6 86.4 9.3 88.8 7.2 

Estimator 7 43.3 51.7 -- -- 

Estimator 8 87.8 7.2 88.1 6.9 

Estimator 9 66.1 28.9 65.4 29.6 

Estimator 10 68.1 26.9 80.1 14.9 

Estimator 11 69.5 25.9 72.4 23.2 

  b. Replicated experiments 

Estimator 1 73.6 21.9 75.7 20.5 

Estimator 2 73.7 21.8 79.3 17.5 

Estimator 3 83.5 11.6 92.7 3.0 

Estimator 4 72.7 22.5 75.8 19.6 

Estimator 5 69.8 25.6 74.1 21.4 

Estimator 6 86.4 9.3 90.2 5.5 

Estimator 7 43.3 51.7 --  -- 

Estimator 8 87.8 7.2 89.1 5.9 

Estimator 9 66.1 28.9 66.7 28.3 

Estimator 10 68.1 26.9 81.5 13.5 

Estimator 11 69.5 25.9 73.9 21.7 

  c. Extended experiments 

Estimator 1 78.0 18.0 82.1 15.2 

Estimator 2 77.2 18.2 80.4 16.0 

Estimator 3 87.6 7.7 92.1 5.1 

Estimator 4 75.4 19.8 78.0 17.2 

Estimator 5 73.8 21.2 76.5 19.2 

Estimator 6 89.4 5.8 90.0 5.8 

Estimator 7 44.2 50.8 -- -- 

Estimator 8 91.0 4.0 92.0 3.1 

Estimator 9 68.3 26.7 68.7 26.3 

Estimator 10 73.8 21.2 81.4 13.6 

Estimator 11 73.0 22.0 75.7 19.8 
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a. Recommendation 1 

According to the first recommendation with the original experimental design, the FGLS 

(Parks) procedure is preferable when the primary concern is efficiency and T/N≥1.5. Figure 1 

plots average efficiencies of estimators on the vertical axis against the T/N ratio on the horizontal 

axis under the old (panel a.) and the new (panel b.) experimental designs.  

 

Figure 1: Average efficiencies of estimators when N≤T (vertical axis) against T/N ratio 

(horizontal axis). 

It clearly appears that recommendation 1 holds with both versions of the experimental 

design. Furthermore, our exact replications indicate that there is a cut point of T/N ratio of 1.25 

from which estimator 7 outperforms others; this rate was 1.5 according to the original results. 
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Additionally, under the new experimental design, when T/N<1.5, estimator 6 appears dominant, 

leading to a complete classification of estimators when N≤T. Another interesting result 

established with the redesigned experiments is that from T/N value of 1.5, there is a total order 

among the estimators with respect to the efficiency indicator as follows: OLS is the least 

efficient estimator, followed successively by the group of estimators 5/9/10/11, estimator 8, 

estimator 6, and lastly estimator 7.  

b. Recommendation 2 

In their second recommendation, Reed and Ye (2011) advise using estimators 5/9/10/11 

or estimator 6 to best optimize efficiency when N>T and HETCOEF>1.67. We are able to 

confirm this recommendation with our exact replications. Panel a. of Figure 2 provides evidence 

for these preferences in absolute terms. The two conditions hold for a total of 46 experiments of 

which roughly 2/3 indicate that estimator 6 is more efficient than the group of estimators 

5/9/10/11, but these estimators are all strictly preferred to estimator 8 and OLS. 

However, subsequent to the correction of the experimental design, no strict preference for 

a given estimator is revealed over all the experiments with N>T and RHOHAT>1.67. The 

numbers of experiments that meet these requirements remains the same, and are split the 

following way with respect to the efficiency performance criteria: estimator 8 outperforms all 

others in 4 cases; it dominates the group of estimators 5/9/10/11 in 13 cases and estimator 6 in 4 

cases. And while the graphical representation reveals a close proximity between estimators 

5/9/10/11 and estimator 6, the performance of the group of estimators at least dominates that of 

estimator 6 in only 15.2 percent of the cases (7 experiments out of 46). Therefore, only estimator 

6 stands out as the best. The elimination of extra serial correlation introduced in the simulations 

through the regressor affects this recommendation by making less recommendable estimators 

5/9/10/11 as best estimators on efficiency grounds when N>T. This conclusion aligns with the 

summaries of Table 2 showing the smaller average efficiency coupled with the number of times 

the estimator 6 is preferred over OLS. It is worth noting that the order for both indicators are 

reversed for the group of estimators 5/9/10/11 and estimator 6 post-correction for regressor serial 

correlation.  
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Figure 2: Average efficiencies of estimators 

when N≤T (vertical axis) against 

N/T ratio (horizontal axis). 

c. Recommendation 3 

Recommendation 3 of the original 

research chooses estimator 4 and estimator 8 

as best performers for constructing confidence 

intervals when RHOHAT<0.30. Two 

indicators are used to measure the 

performance of estimators with respect to the 

confidence interval. These are the coverage 

and the absolute coverage gap with the 95 

percent threshold discussed earlier. The 

second indicator fills a gap characterizing the 

first due to the coverage level averaging by 

capturing the mixed effects of over-rejection 

and under-rejection in experiments for a given 

estimator. 

According to Table 4 and Figure 3, 

recommendation 3 keeps the same estimators 

under both replications experimental designs 

with some variations. For RHOHAT<0.30, 

there is a substantial gain in the confidence 

interval precision for estimator 8 with the 

experimental design change making it the best 

estimator to recommend when N≤T and the 

closest substitute for estimator 4 when N>T. 

In the meantime, the confidence interval 

precision of estimators 2 and 3 which were the 

closest to that of estimator 4 under the initial 

experimental design significantly deteriorates 

subsequent to the amendment. 
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Table 4: Absolute coverage gap with 95 percent for initial and replicated results when 

RHOHAT<0.30  

Procedure 
Initial results Exact replications Replications with extension 

N<=T N>T N<=T N>T N<=T N>T 

Estimator 1 5.2 4.0 5.1 3.9 6.1 5.8 

Estimator 2 4.5 1.8 4.5 1.8 4.9 4.0 

Estimator 3 9.9 1.5 9.9 1.5 6.5 4.8 

Estimator 4 3.7 1.4 3.7 1.4 3.8 1.3 

Estimator 5 6.3 2.1 6.3 2.1 6.4 3.7 

Estimator 6 4.9 2.0 4.9 2.6 4.4 3.4 

Estimator 7 47.9 -- 47.9 -- 49.4 -- 

Estimator 8 3.1 2.4 3.1 2.4 2.3 1.8 

Estimator 9 8.6 6.9 8.6 6.9 9.4 7.8 

Estimator 10 19.9 6.4 19.9 6.4 17.7 8.8 

Estimator 11 6.4 2.1 6.4 2.1 6.8 3.8 

 

1.4.2. Further implications of the redesign of experiments  

We found for the panel individual dimension not greater than the time dimension (N≤T), 

estimator 6 and estimator 7 are the best performers respectively when T/N<1.5 and when 

T/N≥1.5.  More interestingly, we also found that based on the T-N ratio, estimator 6’s efficiency 

performance when N>T is outstanding as shown on Figure 4. This implies that taking out the 

HETCOEF indicator would allow formulating a more compelling recommendation on the 

selection of the most efficient estimator for panel datasets characterized by N>T.  

The above findings about the first two recommendations imply that a single 

recommendation solely based on the T/N ratio would more efficiently combine these two as 

follows: When the primary concern is efficiency, (i) choose estimator 6 when T/N<1.5 or N>T, 

and (ii) choose estimator 7 when T/N≥1.5. 
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Figure 3: Efficiencies vs. error term serial correlation indicator (RHOHATBAR) under the 

extended experiments.  

a. N≤T

b. N>T
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1.5. Conclusion 

Researchers using econometric 

models implicitly need to support their 

theoretical analyses by summarizing 

relationships among series of relevant data. 

One important concern they have would be to 

correctly summarize these relationships. This 

requires accounting for the characteristics of 

their data sets in light of underlying 

assumptions of econometric models that 

guarantee their goodness of fit along with the 

hypothesis tests and inferences they may 

allow. Many estimators are made available 

and incorporated in statistical packages, but 

their performances on different data 

characteristics differ according to the 

treatment of data by underlying procedures 

and the types of data relationships they 

accommodate. This complicates an a priori 

selection of the right estimator to match 

specific data sets a given user of 

econometrics is analyzing. This difficulty is 

accentuated in the context of panel data 

models characterized by a much larger 

number of relationships among variables. 

Estimator selection appears thus to be one of 

the key determinants of econometric models 

performance. 

Reed and Ye (2011) attempted to 

empirically provide researchers with 

recommendations in choosing the right 

estimator among a set of commonly used 

estimators based on the data sets they had 

available by deploying a Monte Carlo 

simulation method. Their research presented 

a set of important recommendations and is 

being well cited among econometric 

practitioners.  

 

Figure 4: Comparison of efficiencies using 

the T/N ratio under when N>T. 
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heteroskedasticity (HETCOEF) and serial correlation (RHOHAT) in the standard OLS residuals. 

 However, it appears that their experimental design contained a flaw whose implications 

for the recommendations are investigated in this paper. The serial correlation in the regressor 

they used in experiments was exaggerated by construction. After adjusting for this flaw, we 

found the following:  

(i) HETCOEF which is one of the data characteristics used for recommendations in 

Reed and Ye (2011) appears to be irrelevant for this purpose; 

(ii) A single complete recommendation could be formulated from the panel data sets 

dimensions ratio (T/N) in place of two incomplete recommendations based on T/N ratio 

for the one while the other combines the HETCOEF indicator to the T/N ratio; 

(iii) While recommendation 3 still holds post experimental design adjustment, the 

precision in the recommendation is improved, making it more straightforward compared 

to its initial version.  
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