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Abstract

In this paper, we study an auction game in which simultaneous Eng-
lish auctions take place at several separate markets, and each market has
multiple identical units of a good to sell. A bidder who knows her own
private valuation of the good and the valuation probability distribution
over other bidders has to select one market to participate and each bidder
needs at most one unit of the good. We analyze the bidders� mixed-
strategy Bayesian Nash equilibrium and develop an algorithm to solve
the equilibria of these games with �nite types and �nite markets. Fur-
thermore, we examine the expected prices and the average surplus gained
by the agents with a successful bid among markets.

JEL Codes: C72, D44, D82
Keywords: Crowding Games, Incomplete Information, Auction Mar-

kets.

1 Introduction

We study an auction game in which simultaneous English auctions take place at
several separate markets with an exogenous �xed supply of homogenous goods
available for sale in each market. Each individual demands at most one unit
of good. We refer a bidder�s valuation of the good as her type and bidders�
type distribution is public information ex ante. After observing her own type,
each bidder decides which market to participate. Once all bidders choose their
intended markets, an English auction is conducted in each market. We develop
an algorithm to solve the Bayesian Nash equilibrium for the above game with
�nite types and �nite markets. We then show that for such a class of games,
there exist no Bayesian Nash equilibria in pure strategies. More importantly,
we prove the existence and uniqueness of the mixed Bayesian Nash equilibrium.
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Furthermore, we examine the expected trading prices and the average surplus
gained in the auctions.
There are two important features in our model. Firstly, each bidder has

to choose which market to enter before bidding. Secondly, once all potential
bidders enter their target markets, an English auction starts in each market si-
multaneously and each bidder bids truthfully. This implies that each individual
can only choose one market to bid for the goods. Such situations are common
in cities or towns where two or more �ower/�sh markets coexist. Thus each
merchant must decide to go to which �ower/�sh market to bid for their goods.
Other potentially related examples include medical students deciding which clin-
ical medicine to pursue, scholars deciding which journal to submit their paper,
�rms deciding to supply components/parts either for Apple or Dell, and so on.
The above examples share a common property in that, the payo¤s from one
choice decreases with the number of agents who choose the same target. From
this point of view, our paper is also closely related to the literature on congestion
and crowding games.
Although there are some studies on multi-unit auctions, most of them restrict

attention to the case of one market. For example, Wilson (1979), Klemperer
and Meyer (1989). Back and Zender (1993) on simultaneous auctions; and
Weber (1983), Maskin and Riley (1992) and Bulow and Klemperer (1996) on
sequential auction, to name a few. In contrast to the above literature, our paper
discusses simultaneous auctions in multiple markets. As we assume individuals
bid truthfully in auctions, the most important strategy for each bidder is the
choice among multiple markets. This deviation from standard auction literature
makes our paper more close to Kranton and Minehart (2001). There is still one
crucial distinction between Kranton and Minehart (2001) and our model. In
contrast to the assumption that each buyer observes her type after deciding
which market to participate made in Kranton and Minehart (2001), we suppose
that a buyer learns her type before entering her intended market. In our model,
each buyer needs at most one unit of the good and may only participate in one
market. As the payo¤ a buyer receives for participating a particular market
decreases with the total number of buyers choosing the same market, our model
is closely related to those in congestion games (Rosenthal, 1973) or crowding
games (Milchtaich, 1996). While both congestion and crowding games possess
Nash equilibria in pure strategies, we show that in our model, there exists only
mixed Nash equilibria. The nonexistence of pure Nash equilibrium comes from
the incomplete information on buyers� valuations: in standard congestion or
crowding models, agents�valuations are public information while in our model,
buyers only observe the ex ante valuation distribution.
The arguments of our algorithm proceeds as follows. At the �rst stage, for

a buyer with the lowest valuation to randomize among multiple markets, she
must receive the same expected surplus from each market. Note that the only
way that such a buyer obtain positive surplus is that the total number of other
buyers entering the same market she participates is less than the supply of that
market. This implies that the probability that excess supply occurs must be the
same among all markets. From this observation we may obtain for each market
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the probability that a typical potential bidder will enter that market. For the
second stage and we look at a buyer with valuation next to the lowest. For such
a buyer to be indi¤erent among all market, we require that her expected payo¤s
are the same from each market. Note that her expected gains from bidding
consist of two parts: the trade executed at price zero and the trade executed
at the price equal to the lowest valuation. From the �rst stage we know the
probability that the former trade occurs is the same across all markets, it is
straightforward to see that the probability that the latter trade occurs must be
the same across all markets as well. By this condition we may compute for each
market the probability that a buyer with the lowest valuation will enter that
market. By applying the above procedure from buyers with the lowest valuation
to buyers with the highest valuation, we may compute the mixed strategies for
buyers of each type.
The remaining part of this paper is organized as follow. We construct the

model in section 2 by introducing an auction-market choice game with incom-
plete information. In the next section, we characterize the symmetric Bayesian
equilibrium by a unique mixed-strategy equilibrium in which all markets are
selected with a positive probability by all types of bidders. The last section
concentrates on developing an algorithm to calculate the unique symmetric equi-
librium and give an example where two types of bidders are playing a market
choice game between two markets.

2 The Model

Now we consider a market-choice Bayesian game. Suppose there are n bidders
and the set of bidders is denoted by N = f1; : : : ; ng. There is a single product
available to bidders and each bidder wishes to purchase one unit of the goods.
Each bidder has a private valuation of the goods and this valuation is not known
by the others. Let bidder i�s private information be ti, ti 2 Ti. Without loss
of generality, we assume Ti = T for all i 2 N and T is a �nite set. Let T =
fv1; v2; : : : ; vhg where v1 < v2 < : : : < vh. So a bidder�s lowest (highest) type
of possible valuations for a unit of the goods is v1 (vh). In this paper, a bidder
with private type ti is also addressed by a ti-type bidder. Suppose each bidder
has a belief on other bidders�types and we model those beliefs with a common
prior and ex-ante symmetry. The information bidder i has regarding the types
of other bidders is captured by a distribution Fi(t�i j ti) where t�i denotes
(t1; : : : ; ti�1; ti+1; : : : ; tn). Let Fi be the set of all possible fi and F = �i2NFi.
Furthermore, we assume that the bidders� types are independent and nature
draws each bidders�type according to a common prior probability distribution
f(t), f : T ! [0; 1]. In which case Fi(t�i j ti) = Fi(t�i) = f(t1)� : : :�f(ti�1)�
f(ti+1) � : : : � f(tn) for any i 2 N . Suppose f(vk) = �k for k = 1; : : : ; h and
hP
k=1

�k = 1.
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2.1 Markets and Bidders�Payo¤s

There are m markets and the set of markets is denoted by M , M = f1; : : : ;mg.
Markets may vary in the supply amount and we assume that market j has qj
units of the goods to sell. Each bidder is allowed to enter at most a market
to bid. Let bidder i�s decision on market choice be ai 2 M and other bidders�
decisions is denoted by a�i = (a1; : : : ; ai�1; ai+1; : : : ; an). Nj = fi j i 2 N and
ai = jg denotes the set of bidders who have chosen market j to bid. We assume
that auctioneers in all markets use ascending price auction to sell the goods and
all units of the goods have to be sold at the same price. The price is incremented
until the market clears. Thus the equilibrium price of market j, pj , is the qj +1
highest bidder�s valuation if jNj j � qj + 1; or pj = 0 when jNj j � qj .
For bidder i, her payo¤ ui can be described as follows,

ui(ai;a�i; ti) =

�
ti � pai if ti � pai ,
0 otherwise.

We can see that market j�s equilibrium price pj is determined by the types
of bidders who choose to bid at market j and the quantity of the goods selling
in market j. One may notice that the qj and qj + 1 highest bidder�s valua-
tions at market j may possibly be the same. In that case, we assume that
bidder i always has a successful bid if ti > pai , and has a successful bid with

probability
qai�jfiji2N , ai=j and ti>paigj
jfiji2N , ai=j and ti=paigj

(and an unsuccessful bid with probabil-

ity 1 � qai�jfiji2N , ai=j and ti>paigj
jfiji2N , ai=j and ti=paigj

) if ti = pai . By this assumption, a bidder

whose valuation is equal to the market equilibrium price should have no surplus
no matter whether she has acquired a unit of the goods or not.

Example 1 Suppose there are �ve bidders 1, 2, 3, 4, 5 and two markets A and
B. If bidder 1, 2 and 3 have decided to go to market A and bidder 4 and 5 go to
market B. If bidders�valuations are 5, 4, 4, 6, 8 respectively and market A has
two units to sell and market B has one to sell. The outcome in market A will
be bidder 1 successfully purchases a unit of the goods, and bidder 2 and 3 each
has a half chance to get a unit of the goods. The equilibrium price in market
A is 4 so bidder 1 has a surplus of 1 and both bidder 2 and 3 has no surplus.
Bidder 5 will has a successful bid with an equilibrium price 6 in market B.

3 Symmetric Mixed-strategy Bayesian Nash Equi-
librium

Each bidder�s decision on market choice depends on her speculation about the
chance of a successful bid, as well as the price to pay. A static market-choice
Bayesian game can be denoted by a quadruple (N;M; huii ;F). A pure strat-
egy for bidder i is a function si(ti) : T !M , where for each type ti 2 T , si(ti)
speci�es the action from the feasible market setM . A mixed strategy for bidder
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i is a mapping �i : T ! �(M), where �(M) is the set of probability distri-
butions over M . We study symmetric Bayesian equilibria (both pure-strategy
and mixed-strategy) of this game and we represent those equilibria as a pure
strategy s(:), or a mixed strategy �(:).
Given a pure-strategy s(:), the expected payo¤ to bidder i with type ti when

other bidders use pure strategy s and i chooses action ai is

Ui(ai; s; ti) =
X

t�i2Tn�1
ui(ai;a�i(s; t�i); ti)Fi(t�i),

where a�i(s; t�i) = (s(t1); : : : ; s(ti�1); s(ti+1); : : : ; s(tn)) denotes the action
pro�le chosen by other bidders when their valuation vector is t�i and their
actions are composed with the strategy s.
Similarly, the expected payo¤ to a bidder i with type ti when other bidders

use a given mixed strategy � and i chooses action ai is

Ui(ai; �; ti) =
X

t�i2Tn�1

X
a�i2Mn�1

ui(ai;a�i; ti)
(a�i; �; t�i)Fi(t�i),

where 
(a�i; �; t�i) is the probability distribution over a�i induced by the
types of the rest of bidders (t�i) and composed with the strategy �. An action
ai is a vk-type bidder�s best response to the strategy � being played by other
bidders if Ui(ai; �; vk) � Ui(a

0
i; �

�; vk), 8a0i 2 M . A strategy �� comprises a
symmetric Bayesian equilibrium if ��(ti) is a best response of bidder i, for each
type ti 2 T to the strategy �� being played by other bidders. Thus we know
that the following condition holds:

Ui(ai; �
�; ti) � Ui(a0i; ��; ti), 8a0i 2M , ai 2 supp(��(ti)).

In addition, we also address a bidder�s expected payo¤ in terms of the following
form

Ui(ai; �; ti) =
X

v2T[f0g;v<ti

prob(pai = v j �)(ti � v).

3.1 Existence of Symmetric Equilibrium

In this section, we aim to prove that every market is included in every bidder�s
symmetric equilibrium strategy with a positive probability. First we give a
lemma to show that if a certain market is excluded from a certain type bidder�s
equilibrium strategy, then it is also excluded from the equilibrium strategies of
bidders with higher types.

Lemma 2 For any symmetric equilibrium strategy �(�), if there exists a type vbk
such that either bk = 1 or bk > 1 and supp(�(vk)) =M for any k 2 f1; : : : ;bk�1g,
then supp(�(vk)) � supp(�(vbk)) for any k 2 fbk + 1; : : : ; hg.
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Proof. Consider the case that bk = 1. Suppose that there exists a market j
such that j 2M and j =2 supp(�(v1)): Since j =2 supp(�(v1)), we know that

Ui(j; �; v1) � Ui(j0; �; v1)

=) prob(pj = 0 j �) � prob(pj0 = 0 j �)
for 8 j0 2 supp(�(v1)).
If a bidder i with private type v2 takes an action ai = j, her expected payo¤

is

Ui(j; �; v2) = prob(pj = 0 j �)v2 + prob(pj = v1 j �)(v2 � v1)
= prob(pj = 0 j �)v2
� prob(pj0 = 0 j �)v2
< prob(pj0 = 0 j �)v2 + prob(pj0 = v1 j �)(v2 � v1)
= Ui(j

0; �; v2)

The probability of pj = v1 is zero because no v1-type bidder appear at market
j implies equilibrium price can not be v1. Also we know prob(pj0 = v1 j �) > 0
because j0 2 supp(�(v1)). Ui(j; �; v2) < Ui(j

0; �; v2) implies that j is strictly
dominated by j0 for any bidder with private type v2. Thus j =2 supp(�(v2)).
Using this argument, we know that a vk-type bidder i�s expected payo¤ by
taking action j can be described as follows:

Ui(j; �; vk) = prob(pj = 0 j �)vk +
X

v2T;v<vk

prob(pj = v j �)(vk � v1)

= prob(pj = 0 j �)vk
� prob(pj0 = 0 j �)vk
< prob(pj0 = 0 j �)vk +

X
v2T;v<vk

prob(pj0 = v j �)(vk � v1)

= Ui(j
0; �; vk),

for 8 j0 2 supp(�(vk�1)). We have proven the case bk = 1.
Now consider bk > 1. Suppose that there exists a market j such that j 2M

and j =2 supp(�(vbk)): For a bidder i with private type vbk+1, we know
Ui(j; �; vbk+1) =

X
v2T[f0g;v<vbk+1

prob(pj = v j �)(vbk+1 � v)
=

X
v2T[f0g;v<vbk

prob(pj = v j �)(vbk+1 � v) + prob(pj = vbk j �)(vbk+1 � vbk)
=

X
v2T[f0g;v<vbk

prob(pj = v j �)(vbk+1 � v)
�

X
v2T[f0g;v<vbk

prob(pj0 = v j �)(vbk+1 � v)
< Ui(j

0; �; vbk+1),
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for 8 j0 2 supp(�(vbk)). Using the same argument reputedly, we can infer that
Ui(j; �; vk) < Ui(j

0; �; vk) for 8k 2 fbk + 1; : : : ; hg. Q.E.D.
If a market is excluded from some bidders�equilibrium strategies, the above

lemma leads to a paradox: Since all higher type bidders will not bid at this
market, it becomes more attractive to higher type bidders. We will prove that
every market, under symmetric equilibrium strategy, must be given a positive
possibility of participation.

Proposition 3 For any symmetric Bayesian Nash equilibrium � in a market-
choice game, supp(�(t)) =M for any t 2 T .

Proof. First, we consider the case where t = v1. By Lemma 2 we know that
j =2 supp(�(vk)) for k 2 f2; : : : ; hg if j =2 supp(�(v1)). It means that if a
bidder with the lowest type does not bid at market j, then no bidder will bid
at market j. However, for a bidder i who deviates the strategy � to choose
market j to bid will receive a full surplus of her valuation ti, with probability
one. That makes ai = j strictly dominate other strategy. Therefore we know
that all markets should be included in a v1-type bidder�s equilibrium strategy, so
M � supp(�(v1)). Now we check the case of t = v2. Using the same argument
we know a market j has only v1-type bidders if j =2 supp(�(v2)). A vk-type
bidder i�s expected payo¤ is

Ui(j
0; �; vk) = prob(pj0 = 0 j �)vk +

X
v2T;v<vk

prob(pj0 = v j �)(vk � v);

where j0 2 supp(�(vk)). If a vk-type bidder i deviates and uses strategy ai = j,
her expected payo¤ will be

Ui(j; �; vk) = prob(pj = 0 j �)vk + [1� prob(pj = 0 j �)](vk � v1);

which is strictly larger than the expected payo¤ under equilibrium strategy.
This contradiction leads up to that M � supp(�(v2)). We can use the same
argument to apply to the cases where ti = v2; v3; : : :. Q.E.D.
We have learnt that a symmetric Bayesian equilibrium must be a mixed-

strategy equilibrium. In the next section we will show how to calculate a mixed-
strategy equilibrium.

4 Algorithm of Solving Equilibrium

In this section we have introduced an algorithm to solve the symmetric equi-
libria in market-choice games. Consider an equilibrium �� and let ��(vk) =
(�k;1; �k;2; : : : ; �k;m), where �k;j denotes the probability that a vk-type bidder

goes to market j to bid. For any type vk 2 T , we know
mP
j=1

�k;j = 1. For a bidder

i who knows she has the lowest type, ti = v1, i can only gain a positive surplus
only when she can purchase the good at the price of 0. So if a v1-type bidder i
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goes to market j, her expected payo¤ will be Ui(j; ��; v1) = prob(pj = 0)� v1.
We know the pj = 0 only when jNj j � qj . Thus i�s best response a�i satis�es:

prob(
��Na�i �� � qa�i ) � prob(jNj j � qj), 8j 2M . (1)

Let �j =
hP
k=1

�k;jf(vk) be the probability that a typical bidder who plays

strategy �� bids at market j. If bidder i chooses to bid at market j, she knows

prob(jNj j � qj) =
qj�1P
x=0

�
n�1
x

�
(1� �j)n�x�1(�j)x. Therefore prob(jNj j � qj) =

prob(jNj0 j � qj0) for j, j0 2 supp(��(v1)). We know that supp(��(v1)) = M .
Thus we have m � 1 equations with m unknowns a1; : : : ; am. We also know
mP
j=1

�j = 1. The solutions of these simultaneous (n � 1)th-degree polynomial

equations in m unknowns can be very complex. However, we can prove that
there is a unique solution.
Once the average participation probability for market j has been solved, we

can recursively solve ��(v1), ��(v2), . . . by comparing the expected payo¤ of
type v2, v3, . . . bidders in di¤erent markets. Finally, ��(vh) can be solved by cal-
culate the di¤erence between (�1; �2; : : : ; �m) and ��(v1); ��(v2); : : : ; ��(vh�1).

5 Conclusion

We study an auction game in which simultaneous English auctions take place at
several separate markets with an exogenous �xed supply of homogenous goods
available for sale in each market. We �nd all bidders use a mixed-strategy in
which all markets are chosen by a positive probability under symmetric Bayesian
equilibrium. We know the symmetric equilibrium is unique and can be solved
by a recursively process in terms of a typical bidder with a possible private
type. We believe that the implication of this research provides applied settings
in a range of areas, such as career choice, constituency nomination strategy,
adoption of innovation, and so on. We are also interested to bring them into
this model in future work.
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