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Abstract 

Individual players in One Day International (ODI) cricket can have substantially different 
skill sets. In this paper we outline how a dynamic programming model of ODI cricket can 
provide the necessary information to calculate a production possibility frontier for an 
individual player. Our method is based on the concept of revealed preference, under the 
assumption that a rational batsman assesses the impact of scoring rates and survival 
probabilities on the expected outcome of the innings when deciding on the appropriate 
level of risk to take. 
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1 Introduction 
 

In One Day International (ODI) cricket1, a batsman faces a trade off between the rate 

at which they can score runs and their probability of survival. If a batsman attempts to 

score at a faster rate then they usually are required to take more risk. Some of 

examples include the batsman attempting to loft the ball over the fielders (risking 

being caught), attempting to run with a lower degree of certainty that he will make it 

(risking being run out) and attempting to hit the ball harder (risking being out in one 

of a number of ways due to having less control of the bat). In this paper, we outline a 

method with which we can determine the trade-off between scoring rate and survival 

for an individual batsman. In order to determine the optimal strategy for a team or 

individual batsman to apply we need to develop production possibility frontiers 

(PPFs) to determine the skill set of individual batsmen.  

 

1.1 A hypothetical case 

 
Our goal is to observe the trade off between expected runs and the probability of 

survival. Unfortunately we cannot observe these variables directly. We are only able 

to observe the outcome of each ball in terms of number of runs scored and whether or 

not a wicket fell. To properly observe this trade off, we require information about the 

risk intentions of batsmen when particular results are achieved. We show the 

usefulness of this by hypothetical example. Imagine that we observe a batsman; we 

call him D. Bradman, over the course of his career of several years, facing 10000 balls 

                                                 
1 We assume that the reader has a basic understanding of the structure of a game of One Day 
International (ODI) cricket; should this not be the case we recommend the reading of Appendix 1 
before continuing. 
 

    1



with the outcomes displayed in Table 1.1. Over this period, our hypothetical D. 

Bradman scored 9994 runs from 10000 balls faced, a scoring rate of 0.9994 runs per 

ball. Bradman was also out 100 times over this period, giving him a survival rate of 

99.00%. This gives us some overall idea of our hypothetical Bradman’s ability but 

tells us nothing about how his scoring rate and survival probability change given 

when he adopts different risk strategies. 

 

Table 1.1: Summary of D. Bradman’s batting outcomes over observed sample. 

Outcome Number of 
Occurrences 

Percentage of 
Occurrences 

Zero Runs 4656 46.56% 

One Run 3344 33.44% 

Two Runs 500 5.00% 

Three Runs 250 2.50% 

Four Runs 1000 10.00% 

Five Runs 0 0.00% 

Six Runs 150 1.50% 

Out 100 1.00% 
 

We now add some more information to our hypothetical model. Imagine that our 

hypothetical batsman informs us that he only ever played with two strategies, a 

relatively defensive strategy which we will call strategy a and a relatively aggressive 

strategy which we will call strategy b. Our hypothetical D. Bradman is equipped with 

a powerful memory and he informs us that he played exactly half the balls in his 

career using each strategy and is able to recall which balls were played under which 

strategy. This information is summarised in Table 1.2 and Table 1.3. 
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Table 1.2: Summary of D. Bradman’s batting outcomes under strategy a. 

Outcome Number of 
Occurrences 

Percentage of 
Occurrences 

Zero Runs 3000 60.00% 

One Run 1500 30.00% 

Two Runs 200 4.00% 

Three Runs 50 1.00% 

Four Runs 230 4.60% 

Five Runs 0 0.00% 

Six Runs 0 0.00% 

Out 20 0.40% 
 

 

Table 1.3: Summary of D. Bradman’s batting outcomes under strategy b. 

Outcome Number of 
Occurrences 

Percentage of 
Occurrences 

Zero Runs 1656 33.12% 

One Run 1844 36.88% 

Two Runs 300 6.00% 

Three Runs 200 2.50% 

Four Runs 770 4.00% 

Five Runs 0 0.00% 

Six Runs 150 3.00% 

Out 80 1.60% 
 

When playing strategy a, our hypothetical batsman D. Bradman scored a total 

of 2970 runs from 5000 balls, a scoring rate of 0.5940 runs per ball, while his survival 

rate was 99.60%. When playing strategy b¸ he scores a total of 7024 runs from 500 

balls, a scoring rate of 1.4048 runs per ball, while his survival rate was 98.40%. We 

now have two points where we know that our hypothetical Bradman was playing 
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different risk strategies and we can infer a basic PPF. Assuming convexity of the 

production set, that is to say that the higher is the probability of survival, the higher is 

the marginal cost in terms of expected scoring rate of an additional unit of survival 

probability, a possible PPF for D. Bradman, if he chose to employ a full range of 

strategies, is displayed in Figure 1.1. Point “A” represents Bradman’s aggressive 

strategy a, while point “B” represents his defensive strategy b. It should be noted that 

with current information, the selection of the points on the PPF other than “A” and 

“B” are arbitrary; however, this is sufficient for the purpose of illustrating our 

hypothetical example. 

 

Figure 1.1: A possible PPF for hypothetical batsman D. Bradman 
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1.2 Inferring the intentions of a batsman 

 
In section 1.1 we outlined a very simple method of finding pairs of scoring rates and 

survival rates to determine points on the PPF of a hypothetical batsman. In practice, 

this method meets with a rather large hurdle. It relies on the batsman telling us how 

much risk he intended to take with each ball. This information is not available to us in 

any practical way. Even if a batsman wanted to give us this information after a game, 

the chances of him remembering his exact risk intentions for every single ball of his 

innings are extremely slim.. One possibility would be to assume that a batsman would 

take the same level of risk every time he is in exactly the same situation, in terms of 

number of balls left, number of wickets left and the number of runs required (if the 

batsman is batting in the second innings). However, we would have a very small set of 

observations for each “situation” using this method, particularly in the second innings 

where the additional variable “runs required” results in situations almost never being 

repeated. We decide to focus our analysis on the first innings and look for some way 

of grouping similar situations. We cannot say that a batsman is in a similar situation 

every time he is batting at a certain stage of the innings, as the number of wickets lost 

certainly plays a role in determining risk strategy. A batsman whose team has lost just 

four wickets after 45 overs will likely adopt a very aggressive strategy, while if his 

team has lost eight wickets at the same stage he will be likely to be much more 

defensive. For similar reasons, we cannot group situations by wickets lost only, 

ignoring the stage of the innings. 

We will show that the key determinant of first innings risk strategy should be 

the number of runs that a team’s expected score falls by if a wicket is lost. The higher 

is this number, the bigger the potential cost to the batting team of a risky strategy; 
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therefore, the more defensive is the optimal strategy for the current batsman to 

employ.  

We have stated that each batsman faces a trade off between expected runs and 

the probability of survival. There also exists a preference trade off, given by some 

utility function U(E[r], η), where E[r] is the expected runs from a particular ball and 

η is the probability of surviving that ball. Later in this paper, we will show that the 

indifference curves implied by the utility function can be assumed to be linear (with a 

few reasonable assumptions) and have a slope that depends on the state of the game. 

By estimating E[r] and η as functions of that slope we are able to both identify the 

PPF and test whether a batsman is choosing points on his PPF that are optimal for the 

game situation. 

 

2 The Theoretical Model 
 

2.1 The Objective Function 

The objective function is simple. The rational goal of any team in a game of ODI 

cricket is to maximise the probability that they win the game.2 Each team is therefore 

trying to maximise their probability, π, of winning the game. We write the objective 

function as 

  Pr( )win

and our optimisation problem as 

 ( Pr( ))Max win . 

                                                 
2 There may be rare exceptions, in a multi-stage tournament or league where a team needs to win a 
game by a particular margin in order to get ahead of another team and qualify for the next round. 
Alternatively, it might be the case that the team in question simply has to avoid a heavy loss to qualify. 
We feel that these rare exceptions would not create significant bias. 
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 We assume that, in the range in which first innings totals generally occur, 

there is a linear relationship between the first innings score and the probability of 

winning. This means that an extra run is equally valuable regardless of the final score. 

For example, a score of 261 gives the team batting first the same advantage over a 

score of 260 as the advantage that a score of 231 would give them over a score of 230. 

We show evidence of this later in this paper. The implication here is that a team 

should maximise their expected additional runs, for the vast majority of possible 

situations that they could be in. We are effectively making current score irrelevant to 

future decision making. This enables us to revise our objective function for the first 

innings as 

 Max(V = Expected Additional Runs) 

 

2.2 The First Innings Value Function 

We need to develop a function to calculate the expected additional runs for every 

possible state. Firstly, however, we must define some variables: 

• Let κ = The level of aggression chosen by the batsman. 

• Let i = The number of the next ball to be bowled in the innings 

 [ ]1, 2,.., 300i∈  

• Let j = The current number of wickets lost by the batting team 

 [ ]0,1,.., 10j∈  

• Let rij = The number of runs scored from the ith ball with j wickets lost3 

[ ]0,1,..,ijr ∈ ∞  
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• Let λij = The probability of losing a wicket on the ith ball with j wickets already 

lost 

 0 1ijλ≤ ≤  

• Let ijγ = The probability of a wide or no ball being bowled on the ith ball with j 

wickets already lost. 

 0 1ijγ≤ ≤  

• Let ijτ = The number of runs scored from a wide or a no ball. 

 [ ]0,1,..,ijτ ∈ ∞  

• Let Rij = The total number of runs already scored by the team at ball i with j 

wickets already lost. 

[ ]0,1,..,ijR ∈ ∞  

• Let V(i,j,Rij) = The expected number of additional runs for a team currently in 

the state of being on the ith ball with j wickets already lost and Rij runs already 

scored. 

  0 ( , )V i j≤ ≤ ∞

                                                

We have a state space of 3311 cells, as a team could be on any one of their 301 balls4 

in the innings and they could have lost any number of wickets from zero to ten. It is 

very unlikely that a team could lose all ten wickets while still being on ball number 

one5. Likewise, it is also unlikely that a team could survive until ball number 300 

without having lost any of their wickets. However, we cover the entire state space 

with our estimated models. This is partly for reasons of completeness, but more 

importantly because the value of V in any one cell has an effect on the value of V in 

 
4 Ball 301 is not actually bowled. This simply refers to the state after the 300th ball of the innings has 
been bowled. 
5 For this situation to occur all ten wickets would have to fall due to batsmen being run out or stumped 
from a no ball, or run out from a wide. In all other circumstances the ball is counted if a wicket falls. 
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other cells. Note that our estimation strategy is to model the expected runs and 

probability of going out under the assumption that batsmen are optimising, rather than 

directly solving the dynamic programming model. This ensures that the V-functions 

in the thin data cells takes into account the data in the thick data cells. We could, in 

theory, calculate the V-functions simply by taking averages, rather than running a 

dynamic programme. This approach would, however, lead to no information in the 

zero data cells and unreliable information in the thin data cells. 

We define the Bellman equation, which links each state to its predecessor, as 

follows: 

( )
6

0
( , , ) max ( ) ( 1, 1, ) (1 ( )) ( 1, , ) ( )

1
ij ij ij ij ij ij ij ij

ij ij

r ij

V i j R V i j R r V i j R r p r
κ

γ τ
λ κ λ κ γ

γ=

= + + + + − + +
−∑ +  

In words, this equation is saying that the expected additional runs scored by the 

batting team from their current state of being at the ith ball of their allotted 300, having 

lost j wickets of their allotted ten and having scored Rij runs already is equal to the 

value function applicable on the next ball plus the expected runs scored from extras. 

The state on the next ball is always one of two possible states; one more ball and one 

more wicket than the current state (with probability λij) or one more ball and the same 

number of wickets as the current state (with probability (1 – λij). Note that the final 

term is the infinite sum of a geometric series as a wide or no ball must be bowled 

again by the bowling side. This means that we could in theory have an infinite number 

of consecutive extras.  

We have made the assumption that a team’s probability of winning is linear in 

their final total and, therefore, their strategy should be to maximise their expected 

additional runs. It is therefore reasonable to assume that the current score, Rij, will not 

influence future outcomes. Our value function thus reduces to 
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 ( )
6

0
( , ) max ( ) ( 1, 1) (1 ( )) ( 1, ) ( )

1
ij ij ij ij

ij ij

r ij

V i j r V i j V i j p r
κ

γ τ
λ κ λ κ γ

γ=

= + + + + − + +
−∑  

We note that we do not know the relationship between κ and ijλ  or κ and , however 

by assuming that batsmen behave optimally, we can further reduce our value function 

to the following 

ijr

 ( )
6

0
( , ) ( 1, 1) (1 ) ( 1, ) ( )

1
ij ij ij ij

ij ij

r ij

V i j r V i j V i j p r
γ τ

λ λ
γ=

= + + + + − + +
−∑  

We can now estimate the values of Pr(rij), λij, ijγ  and ijτ  as probit regression models 

(an ordered probit in the case of Pr(rij)). We can take expectations of rij from our 

ordered probit to further simplify the value function. We now have 

 ( , ) [ ] ( 1, 1) (1 ) ( 1, )
1

ij ij ij
ij ij

ij

V i j E r V i j V i j
γ τ

λ λ
γ

= + + + + − + +
−

 

 We are subsequently able to determine the value of the value function, , for 

each i and j, using a dynamic programming approach. We have two sets of end points 

as a team cannot score any further runs once their innings is over. This occurs when 

300 balls have been bowled or when ten wickets have been lost, whichever is sooner. 

This means we can define the end points of the dynamic programme as follows: 

( , )V i j

 , for all j  (1) (301, ) 0V j =

 , for all i (2) ( ,10) 0V i =

The remaining values of the V-function can be calculated by backward induction. 

  

2.3 Choosing the level of risk to optimise the value function 

The form of the value function described above is used for our dynamic programming 

work. It is convenient for our optimisation work to take the compliment of the 
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probability of losing a wicket λij. We write ijη , the probability of surviving ball i given 

that a team is currently j wickets down, as 

 1ij ijη λ= −  

This way we are describing two desirable goods, scoring rate and survival, on the axes 

of our production possibility frontiers. Our value function is now as follows 

 ( , ) [ ] (1 ) ( 1, 1) ( 1, )
1

ij
ij ij

ij ij
ij

V i j E r V i j V i j
γ τ

η η
γ

= + − + + + + +
−

 

We implicitly differentiate our value function with respect to ijη  to obtain 

 

2

( , ) [ ] (1 ) ( 1, 1)( 1, 1) (1

(1 )
(1 )

( 1, )( 1, )
(1 )

ij ij
ij

ij
ij

ij ij ij ij

ij ij ij
ij ij ij

ij ij

ij ij ij

V i j E r V i jV i j

V i jV i j

)η η
η η η η

γ τ
γ γ τ

η ηη η
η η γ

∂ ∂ ∂ − ∂ + +
= + + + + −

∂ ∂ ∂ ∂

∂ ∂
− −

∂ ∂∂ ∂ +
+ + + +
∂ ∂ −

γ−  (1) 

As we want to maximise the value function at ball i, the value functions at V(i+1, j+1) 

and V(i+1, j) can be considered constant terms as we will maximise by starting at the 

end of the innings and working backwards. Therefore, equation (1) simplifies to: 

 

2

( , ) [ ] ( 1) ( 1, 1) (0)(1 ) (1) ( 1, ) (0)

(0)(1 ) (0)
(1 )

ij
ij ij

ij ij

ij ij ij

ij

V i j E r V i j V i jη η
η η

γ γ τ
γ

∂ ∂
= + − + + + − + + +

∂ ∂

− −
+

−

 (2) 

At the maximum value of V(i, j), the derivative of V(i, j) with respect to ijη  is equal to 

zero. Substituting this first order condition into equation (2) gives us the following 

 [ ] ( 1, 1) ( 1,ij

ij

E r V i j V i j
η

∂
= + + − +

∂
)   (3) 

Equation (3) reveals that, in any state of the first innings, the batting team’s trade off 

between run scoring and survival is equal to the negative of the cost of a wicket. Let 
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C(i, j) = the cost to the batting side of losing a wicket on ball i, given that they have 

previously lost a total of j wickets. 

 

 [ ] ( , )ij

ij

E r C i j
η

∂
= −

∂
      (4) 

Equation (4) holds significant implications for strategy. It is saying that, given the 

value function, the levels of risk that a batting side should be indifferent between are 

those where the trade off between run scoring and survival is equal to the negative of 

the cost of a wicket. For given values of i and j, the cost of a wicket is a constant; 

therefore, the batting team’s indifference curve is linear. 

We have outlined the fact that there are different combinations of runs and 

survival between which the batting team is indifferent. Now we must address the 

capabilities of an individual batsman. On every ball, a batsman must decide how 

much risk he wants to take. Each level of risk results in some number of expected runs 

and some probability of survival, for that individual batsman. These numbers can be 

used to form the PPF for that batsman. A batsman will be optimising if he takes the 

level of risk that places him at the point where his PPF is tangential to the indifference 

curve of the team, given by the cost of a wicket at that stage of the game. We will 

assume that a batsman’s PPF is continuous, monotonic in ijη  and weakly concave.  

Our weak concavity assumption means that a batsman will have to give up a 

higher amount of expected runs in order to get an extra unit of survival, the higher the 

probability of survival he already has and vice versa. We can theoretically justify our 

concavity assumption by reasoning that a batsman, over the course of several balls, 

can reach any point on the straight line between two points of his PPF by mixing 

between those two strategies. 
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We illustrate an example of a batsman’s PPF and his optimal choices in Figure 

2.1, using three potential game situations. For clarity, we do not display the 

indifference curves that do not contain an optimal point on the PPF. At the beginning 

of the first innings, this particular batsman wants to be operating at point A, where he 

is taking a low level of risk, because the cost of a wicket is high here. As this 

particular innings progresses, assuming the wickets falling are of the batsmen at the 

other end, this batsmen moves to higher risk point B in the middle of the innings, then 

to very high risk point C at the end of the innings, where the cost of a wicket is 

extremely low. 

 

Figure 2.1: The PPF with optimal points 
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Figure 2.1 showed the PPF of a particular, but imaginary, batsman. We can also 

illustrate that different batsmen have different optimal points on their PPFs. Some 

batsmen will have a PPF that is completely inside the PPF of another batsman, 

indicating that the former is an inferior batsman in every way. Figure 2.2 illustrates an 

example where two batsmen have different strengths. Batsman A is a relatively better 

defensive player, as he will score more runs than Batsman B when maintaining a high 

probability of survival, while Batsman B is a more effective attacking player. As 

shown on the graph, where the cost of a wicket is at the level implied by this 

indifference curve, Batsman A will optimally operate at point A, while Batsman B 

will optimally operate at the relatively higher risk point B. 

 

Figure 2.2: Comparing the PPFs of two batsmen 
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We note from figure 2.2 that point A is unattainable for Batsman B and point B is 

unattainable for Batsman A. The optimal point for each batsman appears on the same 

indifference curve, indicating that the batting team would be indifferent between 

optimising Batsman A and optimising Batsman B being the current batsman. This 

would not usually be the case as we show in figure 2.3. If the cost of a wicket was 

higher than the indifference curve in figure 2.2 implies, the batting side would have a 

steeper indifference curve and Batsman A’s optimal point (A1) would be on a higher 

indifference curve than Batsman B’s optimal point (B1). This is because a more 

defensive strategy is preferred in this situation and Batsman A is a better defensive 

player. If, however, the cost of a wicket was lower than the indifference curve in 

figure 2.2 implies, a more attacking strategy is preferred and Batsman B’s (B2) 

optimal point is on a higher indifference curve than Batsman A’s optimal point (A2). 

 

Figure 2.3: Comparing the strengths of two batsmen 
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3 Analytics 

3.1 Data Sources and Timeframe 

 
The data used is a set of 311 matches over the period 20 July 2001 to 25 January 

2008. It consists of ball-by-ball information collected by New Zealand Cricket.  

 

3.2 A Structural Break 

 
A major rule change occurred in ODI cricket during the period of our data set. All 

matches played prior to 1 July, 2005 required that the fielding side could place no 

more than two fielders outside an approximate oval (know as the “circle”) drawn 30 

yards from either end of the pitch for the first 90 balls of each innings. This is a 

fielding restriction as compared to the five fielders allowed outside the circle for the 

remainder of the innings. In contrast, matches played between 1 July, 2005 and 30 

September, 2007 required the above restriction to be in place for the first 60 balls of 

an innings and for two additional periods of 30 balls, the timing of which were 

decided by the fielding captain. These 30-ball periods are known as “power plays”. A 

smaller rule change occurred on 1 October 2007, from when fielding sides were 

allowed three fielders, rather than two, outside the restricted area during the second 

power play6.  

The increased presence of fielders close to the batsman and the lack of fielders 

patrolling the boundary serve to increase both scoring rates and the risk of a batsman 

getting out. There are generally more runs available but it is more difficult to score 

                                                 
6 As from 1 October 2008, this rule has significantly changed again as now the batting side is 
responsible for electing the timing of one of the power plays and both power plays allow three fielders 
outside the circle. 
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these runs without hitting the ball over the top of the fielders, rather than along the 

ground, resulting in the batsman risking hitting a catch. Before we move forward with 

our analysis, we assume that the minor rule change allowing three fielders in the 

restricted area during the second power play has no significant effect. By far the more 

significant rule change is the extension of the fielding restrictions from 90 balls to 120 

balls in total. This enables us to divide our data set into two subsets, matches played 

without the power play rule (Era 1) and with the power play rule (Era 2). Era 1 

contains 185 matches while Era 2 contains 126 matches. 
 

3.3 The effect of conditions 

Cricket is a sport where the venue conditions on the day of a match can have a marked 

influence on the amount of runs that a team can score. The variation in scores from 

conditions is due to three main factors; the size of the venue, the nature of the pitch 

and the overhead conditions. Smaller venues make it easier to hit the ball to or over 

the boundary, resulting in higher scores. Pitches can be fast or slow, green or brown, 

wet or dry, all of which can affect the ease of scoring. Overcast conditions along with 

humidity can significantly increase the propensity of the ball to swing, making batting 

more difficult. 

In our dataset we do not have a direct measure of conditions; instead we must 

create the measure. This research is outside the score of this paper. For the purposes 

of the analysis in this paper, it is sufficient to know that our conditions measure is a 

normal distribution conditional on the final runs scored in the first innings and the 

binary outcome of the match. We therefore have a distribution for each match and we 

draw from this distribution in order to incorporate conditions into our models. We 

assume that total scores are a function of two distinct factors; these factors having an 
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additive relationship. Let S = ρ χ+ , where S is the first innings score, ρ  is a measure 

of “Performance” and χ  is a measure of “Conditions”. This allows us to observe and 

model performance independently of conditions; for example, scoring 280 in 

conditions where the average score would be 250 is equivalent to scoring 230 in 

conditions where the average score would be 200. 

 

3.4 Testing the linearity assumption 

We stated earlier when determining the objective function for the first innings that 

there is a linear relationship between the first innings score and the probability of 

winning. This enabled us to define the objective function for the team batting first as 

to maximise the expected additional runs from any point. In order to text this 

assumption we look at the relationship between actual first innings scores and the 

percentage of games won with each score. Since we might have very few observations 

(in some cases no observations) at each score S, we need to smooth the data. Our 

method is to look at a range of scores in the vicinity of S. We use the 41-point interval 

(S-20, S+20) and calculate the percentage of games won by the first team to bat in this 

interval and we repeat this analysis for each value of S. 

We split our data set into two parts; those games played prior to the power 

play rule change (Era 1) and those games played after the rule change (Era 2). Figure 

3.1 shows the relationship between first innings score and the percentage of games 

won in Era 1, while Figure 3.2 shows the relationship for Era 2. We include a 95% 

Wilson confidence interval for the estimated proportion of wins, as recommended by 

Brown et al (2001). In addition, we run a simple linear regression model for each era 

in order to compare these models with the observed (smoothed) win percentages. The 

linear model equations are: 
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 For Era 1: Win% = -0.5708 + 0.0045*S 

 For Era 2: Win% = -0.4235 + 0.0036*S 

 

Figure 3.1: Smoothed relationship between score and win percentage in Era 1 
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Figure 3.2: Smoothed relationship between score and win percentage in Era 2 
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It is apparent that assuming a linear relationship between first innings score 

and the probability of winning is appropriate for the Era 1 data. Any deviations of the 

linear model from the observed win percentage are well inside the confidence 

intervals for the majority of observed scores. In Era 2, the linearity assumption does 

not fit the data as well. Two aspects of Figure 3.2 are of particular note. There is an 

unexpected decreasing trend in the range of scores (194, 234) and the win percentage 

falls away to zero, rather than the intuitive level of one, when scores get extremely 

high. The latter situation is because the sample size is one at these points; the game 

with the highest score simply happened to result in a loss for the team batting first. 

The decreasing trend, however, is more difficult to explain but a possible cause would 

be if conditions were worth relatively low amounts over this range when compared to 

the scores. When we incorporate conditions into our models we implicitly make this 

assumption as our conditional distributions for conditions have a lower mean when 

the game was lost by the team batting first, given a certain value of first innings score. 

We want to assess whether we can make the assumption that the probability of 

winning is linear in the performance of the teams in the first innings. Recall that 

S = ρ χ+ , where S is the first innings score, ρ  is a measure of “Performance” and χ  

is a measure of “Conditions”. We sample from the conditional distribution of χ  

(given S and the result of the match) for each match 100 000 times. We then isolate  

ρ  by subtracting χ  from S and calculate a win percentage for each value of ρ . 

Figure 3.3 (Era 1) and Figure 3.4 (Era 2) show the results. We fit straight lines over 

the values of performance that appear to have a relationship with the probability of 

winning that is approximately linear. This occurs for probabilities between 

approximately 0.1 and 0.8 in Era 1 and between approximately 0.15 and 0.8 in Era 2. 

In the more extreme ranges the relationship is non-linear. Arguably, it is the games 
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where first innings performances provide a probability of winning in the region of 

50% that playing the optimal strategy would have the greatest impact. 

 

Figure 3.3: Relationship between performance and win percentage in Era 1 
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Figure 3.4: Relationship between performance and win percentage in Era 2 
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3.5 Expected Additional Runs Models without Conditions 

Recall our value function for the expected additional runs scored from any point of 

the first innings. 

( , ) [ ] ( 1, 1) (1 ) ( 1, )
1

ij ij ij
ij ij

ij

V i j E r V i j V i j
γ τ

λ λ
γ

= + + + + − + +
−

 

In order to solve the dynamic programme, we need to model rij, λij, ijγ  and ijτ . We do 

this by creating probit regression models. The full modelling process is very detailed 

and is outside the scope of this paper; however, we briefly outline the models created 

for the two most important variables, rij and λij, below. The set of possible explanatory 

variables used in each of models are innings ball (i), current wickets lost (j) and the 

rules in place at the time of each match (Era). In these models we do not include a 

variable for conditions; we will show the effect of including this variable in Section 

3.4. We are effectively assuming here that all conditions are the same. 

For reasons involving the confidentiality of our results, for the remainder of 

the paper we focus our analysis on Era 1, the games played under the old rules. 

The model of rij is an ordered probit regression based on the variables i, j and 

Era. There are seven possible whole numbered values that rij can take; that is, the 

whole numbers from zero to six, although five is extremely rare. We show the 

probabilities of each number of runs being scored from a given ball i in Figure 3.5, 

using the example of being two wickets down. The structural break after ball 90 of the 

innings occurs due to the fielding restrictions being lifted at that time of the innings 

under Era 1 rules. The other structural break in the model, a slope change, was 

imposed after ball 240 to better fit the data. As expected, the probability of scoring a 

zero is high at the start and steadily drops throughout the innings. The probability of 
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scoring a single increases sharply after the end of the fielding restrictions (ball 90), 

but falls away at the end of the innings as a team just two wickets down at this point 

would be more concerned with scoring boundaries than singles. 

 

Figure 3.5: Runs probabilities for Era 1 | j = 2 
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Since our value function does not directly require the probability of scoring a 

particular number of runs from a given ball, we take the expected value of the runs 

functions as 

 E(rij) = 0*Pr(0) + 1*Pr(1) + 2*Pr(2) + 3*Pr(3) + 4*Pr(4) + 5*Pr(5) + 6*Pr(6) 

We plot the expected runs functions, for odd-numbered wickets (for clarity), in Figure 

3.6. 
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Figure 3.6: Expected Runs Functions for Era 1 

0

0.5

1

1.5

2

2.5

1 31 61 91 121 151 181 211 241 271

Innings Ball

Ex
pe

ct
ed

 R
un

s 
   

   
   

   
   

   
   

   
 x

j=1 j=3 j=5 j=7 j=9
 

 Note that our expected runs functions are generally upward sloping. This is 

what our intuition tells us as teams should want to take more risks and score more 

quickly as their balls remaining constraint becomes tighter while the wickets 

remaining constraint remains constant. There is very little crossover of the functions, 

indicating that teams, for the most part, score at a faster rate the less wickets that they 

have lost.  

 The model of λij is a probit regression based on the variables i, j and Era. We 

show the probabilities of losing a wicket, given a team is a certain number of (odd-

numbered) wickets down already, in Figure 3.7. These are clearly more difficult to get 

an intuitive understanding of than the expected runs functions. With runs, batsmen 

higher in the order should take more risks (for a given number of wickets lost) and are 

usually better players. Both these considerations lead to a higher expected runs for the 

lower numbers of wickets lost than the higher ones. With the probability of getting 
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out, what we should expect is not so clear. On one hand the players earlier in the order 

have more ability and we would expect them to have a lower chance of going out, but 

on the other hand for a given value of i, the lower is the value of j, the more risk it 

makes sense for the team to take. There are also periods where the functions are 

downward-sloping; this can be explained by factors beyond the batting team’s control 

such as facing the new ball, which in most cases is more dangerous than the older 

ball, and the level of aggression in where the fielding captain places his fielders. 

 

Figure 3.7: Probability of a Wicket Functions for Era 1 
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 We have applied two adjustments to the “raw” probit models for rij and λij, 

using our knowledge of the game of cricket to make corrections in the game situations 

where data is thin and we believe the model is getting it wrong.  

 The first adjustment involved forcing the lines for zero to four wickets lost to 

finish on the same value as we assume that there is no difference in the ability of the 

batsmen at the crease on ball 300, given that there are two specialist batsmen at the 

crease.  

 The second adjustment involved identifying the probability of the team 

surviving (avoiding losing all ten wickets) until the end of the innings from a given 

situation. We assume that where this probability is very low (less than 10%), a team 

will play with the same strategy at all lower values of i, for a given value of j; that is, 

the balls remaining constraint is an insignificant factor as the team is unlikely to 

survive long enough for it to matter. We therefore impose, for each j, the value of the 

expected runs function or probability of a wicket function at the i where the survival 

probability first falls below 10% (when investigating each point in a descending 

fashion) on all i from earlier stages of the innings. We start by applying this process 

for all i for our j = 9 function and work backwards through the remaining values of j. 

This is because the adjusted probability of a wicket function for j = 9 will affect the 

survival probabilities for the other values of j. 

Once we have estimated all the parameters of our value function, we run our 

dynamic programme, beginning with the two situations that result in the end of the 

innings and working backwards. Recall that these situations are when 300 balls have 

been bowled or when 10 wickets have been lost. We plot ten expected additional runs 

functions V(i, 0) to V(i, 9) in Figure 3.8. We notice that the functions are quite flat 

early in the innings, with large differences between their levels. As the innings 
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progresses, the functions become steeper and the differences between the functions is 

not as great. This is to be expected as the wickets remaining constraint becomes less 

important relative to the balls remaining constraint, as more and more balls are 

bowled in the innings. 

 

Figure 3.8: Expected Additional Runs functions for Era 1 
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Figure 3.9: V-functions vs actual average additional runs for Era 1 
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In Figure 3.9 we compare the expected additional runs functions with the 

actual average additional runs from each point in the innings. We should only (i, j) 

combinations for which we have at least 30 observations and again for clarity we 

show the odd-numbered values of j. There is some over prediction for the early 

wickets but overall the model fits the data fairly well. 

 

3.5 Expected Additional Runs Models With Conditions 

Having constructed and assessed the basic Expected Additional Runs models, we 

extend this work by including our variable for conditions as an explanatory variable in 

each of our probit models. We expect this to have two main effects. Firstly, our model 

in the “average” conditions should differ as previously some of the coefficients on the 
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variables in the probit regressions would be implicitly taking into account the effect of 

conditions.  Secondly, it gives us an insight into how the different the shape of the 

expected additional runs functions might be under different conditions. 

 We plot the expected additional runs functions for the odd numbered values of 

j in Figure 3.10. The solid lines refer to the model created with the conditions variable 

(assuming the conditions expect an average score of 244, which was the score 

predicted by the model without conditions), while the solid lines refer to the model 

without the conditions variable. A clear implication of including the conditions 

variable is that the expected additional runs functions tend to have a slightly larger 

negative slope. This is an intuitive result. Consider the situation where a team has lost 

a wicket very early in the innings. This may have been due to poor batting, good 

bowling, poor batting conditions or simply bad luck; we do not know which 

combination of these factors caused the early wicket. Given an early wicket has fallen, 

however, it is slightly more likely than average that we are in worse than average 

batting conditions. With no further information, the model without the conditions 

variable predicts a slightly lower expected additional runs value than the model where 

we know that conditions are in fact average. In the latter case, we are effectively 

ruling out conditions as the cause of our early wicket. The opposite applies in 

situations where we have lost a low number of wickets given the point of the innings. 

The model without the knowledge of conditions then assumes we are on a better-than-

average pitch and overstates our future run-scoring potential. 
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Figure 3.10: V-functions with and without conditions variable for Era 1 
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We now want to investigate whether the nature of the expected additional runs 

functions change as we impose different conditions. One method of adjusting for 

different conditions would simply be to take the model in approximately average 

conditions and scale it up or down using a constant multiplicative scale factor. In 

order to test this, we take the functions for conditions worth 250 and apply a scale 

factor to reduce the V(1,0) cell to 200. We then compare these scaled functions with 

the functions calculated by imposing conditions of 200 in the dynamic programming 

model. The results for the odd-numbered values of j are shown in Figure 3.11. We 

repeat this analysis for conditions worth 300 and show these results in Figure 3.12. 
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Figure 3.11: V-functions with conditions worth 200 vs scaled values 
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Figure 3.12: V-functions with conditions worth 300 vs scaled values 
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Figure 3.11 shows that for early stages of the innings, relative to the number of 

wickets lost, the V-functions that include the true conditions value of 200 have a 

flatter slope than the scaled V-functions where conditions are 250. This implies that is 

the early stage of the innings that tends to be causing more than its fair share of the 

difference between scores in 250 conditions and scores in 200 conditions. This is also 

true for 300 conditions, as seen in Figure 3.12. In this case, the V-functions including 

the true conditions value of 300 tend to have a steeper slope than the scaled values in 

the early stages of the innings. 

 Consider an example of an extreme situation where a team gets a very good 

start in terms of survival and has survived 90 balls of the innings without losing a 

wicket. We show in Table 3.1 the score that this team would need to have at this point 

in order to be still on target for an average score in the conditions. This simple 

example indicates the need for teams to score a higher percentage of their runs early 

in the innings, the higher is the value of conditions. 

 

Table 3.1: Zero Wickets Lost at Ball 91 

Conditions Expected 
Additional Runs 

Current Score 
Required 

% of Total Score 
Required 

200 184 16 8.0% 
250 215 35 14.0% 
300 246 54 18.0% 

 

3.6 The Cost of a Wicket Functions 

Recall that the key determinant of first innings optimal strategy is C(i, j), the cost of 

losing a wicket on ball i given that  j wickets have already been lost. Having identified 

    32



our expected additional runs functions V(i,j), we can now estimate the cost of losing a 

wicket as  

 C(i, j) = ( 1, 1) ( 1, )V i j V i j+ + − +  

 As the V-functions vary under different conditions the cost functions also 

vary; therefore we have a set of cost functions for each type of conditions. In Figure 

3.13 we plot the cost functions for odd-numbered values of j where conditions are 

equal to 250. Note that the costs are not ordinal in the number of wickets lost; this is 

an indication of the complexity of the decision that players have to make on the field 

in terms of their risk strategies.  

 

Figure 3.13: C-functions with conditions worth 250 
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3.7 Inferring the Production Possibility Frontiers 

We determined earlier that
[ ] ( 1, 1) ( 1, )ij

ij

E r V i j V i j
η

∂
= + + − +

∂
; that is, assuming 

concavity in a batsman’s PPF, he maximises the expected additional runs function by 

choosing the level of risk where the slope of his PPF is equivalent to the (negative) 

cost of getting out. We propose that a rational batsman will adjust their chosen level 

of risk as the cost of getting out changes. Note that we are not assuming that a 

batsman will select the optimal level of risk; rather, we are suggesting that the cost of 

a wicket provides a good reference point for us to compare a batsman’s trade-off 

between scoring rates and the probability of survival. This will enable us to determine 

what a batsman is capable of and we subsequently can use this information to 

investigate what the optimal strategy of that batsman should be. 

 We group our data by individual batsman, era (old rules or new rules) and 

whether or not in the fielding restrictions period of the innings. For each group we 

calculate an ordered logit regression model to regress our runs from ball variable, rij, 

on our cost of a wicket variable and conditions variable, C(i,j) and ijχ  respectively. 

We expect that the cost of a wicket variable will influence the runs variable negatively 

as batsmen should be more defensive when it is expensive to lose a wicket. We also 

expect that the conditions variable will influence the runs variable positively as it 

should be easier to score more quickly in easier batting conditions. We use a logit 

regression model to regress our binary survival variable, ijη , on C(i,j) and ijχ . We 

expect that the cost of a wicket variable will influence the survival variable positively 

as survival should be more important to a batsman when the cost of his wicket is high. 

We also expect that the conditions variable will influence the survival variable 

positively as survival should be easier in easier batting conditions. 
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 Our runs regression gives us the probabilities of scoring each number of runs; 

therefore, we take expectations of these values to get expected runs per ball . We 

then plot the combinations of  and Pr(

[ ]E r

[ ]E r 1)η = implied by each value of C, for a 

given value of χ . Some examples of the results are shown in Figures 3.14, 3.15 and 

3.16. These results all use games in Era 1, with the fielding restrictions not in place 

and conditions of 200, 250 and 300 respectively. The functions are for a prominent 

New Zealand batsman and a prominent Australian batsman. We are able to show their 

comparative abilities in poor, approximately average and good batting conditions. 

Note that these functions are currently in the early stages of development. 

 

Figure 3.14: PPFs where χ = 200 
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Figure 3.15: PPFs where χ = 250 
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Figure 3.16: PPFs where χ = 300 
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 Figure 3.14 shows that the Australian batsman is expected to outperform the 

New Zealand batsman in all possible game situations when the game is played under 

poor batting conditions. We consider two factors when making this statement. Firstly, 

for all rates of run scoring that are common to both functions, the Australian batsman 

is able to achieve each rate with a higher probability of survival than the New Zealand 

batsman. Additionally, the Australian batsman’s maximum possible scoring rate and 

maximum possible survival probability are higher than those of his New Zealand 

rival. 

 Analysing Figures 3.15 and 3.16 result in different conclusions. In average and 

good batting conditions, in certain situations the New Zealand batsman would be 

expected to outperform the Australian batsman. At very high survival rates, the New 

Zealand batsman is able to score runs at a faster rate than the Australian batsman. The 

Australian batsman maintains his significant advantage at lower survival rates. The 

New Zealand batsman would therefore be preferred in situations where survival is of 

utmost importance; that is, when the cost of a wicket is very high. 

 

4 Conclusions 

By developing a dynamic programming model of expected additional runs, we have 

obtained a new variable, the cost of losing a wicket. We are able to use this variable as 

a reference point to assess player ability and determine production possibility 

frontiers. Possible applications of these PPFs include assessing strategic performance 

and determining the optimal strategy for any point of the innings. This includes 

determining the appropriate risk that each batsman should take, given the game 

situation, and the appropriate batsman for a given situation as teams are not required 
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to select their batting order in advance. We hope, with further work, to be able to 

quantify the levels of overall score that are possible, given that a team as a whole 

behaves optimally. 
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Appendix 1: The necessary basics of the game of cricket 

 

Cricket is a sport played between two teams of 11 players on a large, approximately 

circular field with a 22-yard-long strip of pressed clay, soil and grass known as a 

“pitch” in the centre. One team will initially be the bowlers and the other team will be 

the batsmen. All 11 members of the bowling team are on the field while only two 

members of the batting team are on the field at any one time. The basic idea of the 

game is relatively simple. A bowler bowls a ball from one end of the pitch by 

releasing it with a straight arm action in the direction of the batsman. The ball will 

usually bounce once before reaching the batsman. The two main goals of a batsman 

are to score “runs” and avoid getting “out”. A run is scored each time a batsman, 

having hit the ball with his bat, running to swap ends of the pitch with the other 

batsman. Alternatively, a batsman may score an automatic four or six runs by hitting 

the ball so far that it leaves the playing field. These automatic runs are known as 

“boundaries”, with four being scored if the ball bounces before leaving the playing 

field and six otherwise. If a batsman is “out” then his turn at batting is over and he 

must leave the field to be replaced by a team mate.  

 A batsman may be “out” in a number of ways; however, we outline only the 

most frequent below: 

• Bowled – when the ball, having been bowled by the bowler, hits any of three 

wooden poles positioned at the batsman’s end of the pitch. 

• Caught – when the batsman hits the ball in the air and the ball is subsequently 

caught by any member of the fielding team. 

• Leg Before Wicket (LBW) – We will not discuss the complicated aspects of 

this method of going “out”; however, in general a batsman is out LBW if the 
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ball, having not been hit by the bat, strikes the batsman’s body (almost always 

the leg) and would have otherwise hit the wickets. 

• Run Out – If the batsman attempt to score runs by running to the opposite end 

of the pitch and the fielding team hits the wickets at either with the ball before 

the batsman running to that end reaches a line at the end of the pitch known as 

a “crease”. 

• Stumped – When the batsman advances towards the ball, misses it with his bat 

and the wickets are hit with the ball by the wicketkeeper (the fielder standing 

behind the wickets) before the batsman can get back to the “crease”. 

 

The batting side may continue batting until ten of the 11 members of their side 

are out, then the two teams switch roles. A team’s turn at batting is called an innings 

and each team will have either one or two innings depending on the type of game. In 

general, the team that scores the highest number of runs wins the game. 

There are three main versions of the game. In test cricket, the traditional  form 

of the game, each team bats for two innings and a match lasts a maximum of five 

days, with the match being declared a draw if it is not finished in this time. One Day 

International (ODI) cricket allows each team to bat for one innings but with a limit of 

300 balls per innings. The innings finishes when ten batsmen are out or the 300 balls 

are up. As the name suggests, this type of game is all over in a day, running for 

approximately eight hours. Twenty20 cricket is the newest form of the game and is 

similar to ODI cricket except that the limit is 120 balls per innings and the game takes 

approximately three hours. In this paper, we consider only ODI cricket. 

 


