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Abstract

We present a novel experiment to evaluate the role of confusion in explaining

the dynamics of contributions in public goods experiments. In a learning condition

we keep the subjects confused by withholding the information that would be

necessary for them to understand the game. The comparison of the results with

those of a standard public goods treatment provides a lower bound for the influence

of confusion on contribution dynamics. We find that learning in the state of

confusion explains 41 percent of the contribution dynamics in the standard public

goods game. This result complements that of Houser and Kurzban (2002) who

found that all of the decrease in contributions can be attributed to the reduction

of confusion. We argue that their findings can be seen as an upper bound for the

influence of confusion.
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1 Introduction

”A natural explanation for the large rate of contribution in many voluntary contribution

experiments can be found in the inexperience of the subjects. Perhaps, a 40 to 60 percent

contribution rate occurs simply because if one must contribute a number between 0 and Z

and does not understand the implication of the act, then a natural choice is somewhere

in the middle. Clearly it is important to be able to discover whether the data are simply

the result of confusion and inexperience or the result of some more purposeful behavior.”

John O. Ledyard (1995: 146)

In a 2002 paper in this Review, Daniel Houser and Robert Kurzban (henceforth HK)

report the results from an experiment aimed at discriminating between strategic behavior

and confusion in public goods experiments. In their design, subjects participated in a

“computer condition” in which all other group members were simulated by automata. A

comparison to a standard public goods game was used to isolate the effect of confusion.1

HK’s findings were the following. The subjects on average contributed 28.6 percent of the

endowment in the computer condition but 52.8 percent in a standard human condition.

Off-equilibrium play in the computer condition cannot be associated with social motives

towards other players and therefore has to be caused by confusion. So HK conclude that

confusion accounts for 54 percent of all contributions to the public good. The finding

that confusion accounts for a substantial amount of contributions is consistent with the

existing literature (e.g. James Andreoni, 1995; Thomas R. Palfrey and Jeffrey E. Prisbey,

1996).

More interestingly, contributions in their computer condition fell with repetition at a

rate much higher than in the human condition. HK conclude from this observation that

the decay in contributions is entirely due to the reduction of confusion. This conclusion

has very important implications. Given that HK find that the initial contributions in the

human treatment are above the contributions in the computer treatment, a corollary of

their conclusion would be that in the absence of confusion cooperation would be stable at

an initial level. This view contradicts the conventional wisdom that the decay of contri-

butions stems from the heterogeneity of preferences within a group, where the conditional

cooperators start out with high contributions but consecutively adjust their contributions

downwards as a reaction to selfish group members (see Andreoni, 1995; Kurzban and

Houser, 2005; Laurent Muller et al., forthcoming; Urs Fischbacher and Simon Gächter,

1Paul J. Ferraro and Christian A. Vossler (2006) use a similar design for the same purpose and

complement it with econometric modeling.
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2006).2 In contrast, HK’s findings imply that cooperation unravels due to some confused

subjects, while most other authors claim that cooperation unravels because of some selfish

individuals.

HK state their underlying assumption, which is sufficient for their conclusion, to be

that “cooperation due to confusion is similar in the human and computer conditions”

(HK: 1066). In what follows, we analyze the implicit impact of this assumption and argue

that HK’s attribution of the decay in contributions to confusion can be regarded as an

upper bound. We then propose an experimental approach that provides a lower bound

for the impact of confusion on the decay of contributions to complement HK’s findings.

In HK’s computer treatment, the reduction of confusion can only lead to a reduction in

contributions, as social motives are excluded. So their assumption of equivalent behavior

of confused players in both the human and computer treatment implies that confused

people in the human treatment learn selfishness independently of conditional cooperation.

If individuals are allowed to exhibit some form of conditional cooperation, then the true

decay of contributions by confused subjects is likely to be different in the human treatment

than the decay recovered from the computer treatment. Further, their assumption implies

that imitation learning has to be identical regardless of the identity (computer or human)

of the imitated and whether the behavior to be imitated is explicitly given before a decision

or just as information after a round.3

HK’s assumption that confused subjects behave and learn exactly in the same way

regardless of the treatment cannot be tested empirically. Hence, their finding that the

decay in public goods games can be fully attributed to the reduction of confusion is to be

regarded as an upper bound. Alternative designs based on other plausible assumptions

might lead to different results.

As demonstrated, studies that use computer treatments for isolating the effects of

confusion suffer from the need for auxiliary assumptions on how the behavior in the

computer treatment translates into a human situation. In fact, all studies that try to

isolate the dynamic effects of confusion have to make some assumptions. Given that the

results and the assumptions made by HK provide a conclusion that gives an upper bound

on the impact of confusion on the decay of contributions, we choose our design such

that our results can be seen as a lower bound. Suppose confused subjects are much less

sophisticated than assumed by HK. Assume that a confused subject neither understands

2Herbert Gintis et al. (2003) explain similar dynamics with an evolutionary approach.
3In HK’s computer treatment the contributions of the computers were given before individuals had to

decide.
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the incentive structure, nor uses the contributions of other subjects (or computers) as a

means of imitation learning.

Such an extreme initial assumption has the advantage that no further implicit as-

sumptions about the reaction to computer contributions has to be made. Additionally,

the dynamics of contributions of individuals, who are confused and ignorant in the sense

explained above, do not have to be imputed from a treatment where social motives are

excluded. Instead, confusion of this kind can be induced by withholding information

about the payoff structure and the choices of other group members. So a treatment where

subjects do not know either the incentive structure or the choices of the group members

induces this kind of “ignorant” confusion. Subjects can only learn by reinforcement in

such an environment. We run such a treatment and compare the contribution dynamics

with those in a standard public goods game.

Inducing confusion with such a procedure instead of recovering it from a computer

treatment comes at a price. Subjects that are more sophisticated but still confused are not

properly represented. Confused subjects, who are cleverer than the assumed “ignorant”

subjects, are expected to learn and reduce their contributions more quickly (if they are

self interested). Hence, the dynamics observed in a treatment inducing confusion defined

as ignorance can be seen as a lower bound to the true impacts of confusion on contribution

dynamics. The merit of a study inducing confusion as ignorance is that it complements

HK’s upper bound with a lower bound. As such, finding that the decay of contributions

in our confusion treatment is still stronger than in the traditional public goods game

would put HK’s claim that confusion is responsible for all decay beyond doubt. The

converse finding would imply that not all decay is necessarily caused by confusion. Such

a finding would leave room for the conventional belief that (at least some of) the decay

in contributions is due to the reaction of conditional cooperators to low contributions of

selfish subjects.

Our results are as follows. At the aggregate level we find that contributions drop

off in both the confusion condition and the standard public goods game. This obser-

vation supports the claim that learning leads to dynamics similar to those which are

readily interpreted as conditional cooperation in standard public goods games. However,

in contrast to HK, we find that the contributions in the standard treatment decrease at

a significantly higher rate than in the confusion condition. According to our estimates

learning only accounts for 41 percent of the contribution dynamics. We also analyzed

whether the reduction of confusion (due to reinforcement learning) can cause correlated

behavior at the individual level that can be mistaken for conditional cooperation. Our

experiment provides direct evidence that the correlation of contributions with average
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past contributions of the other group members cannot be explained by the reduction of

induced confusion.

The next section describes the experimental design. Section 3 presents our findings

and section 4 concludes.

2 Experimental design

Our design induces confusion by withholding information about the game from the sub-

jects. They only know the admissible action space and that the environment may change

over time. Over the repetitions of the game, the subjects are informed only about the

payoff resulting from their last choice (see Appendix II for instructions).

We employ a within-subject comparison between two phases, which we complement by

a treatment to control for the effect of the same subject participating in two treatments.

The within-subject comparison enables us to observe the same subject’s behavior both

in a state of confusion and in the standard condition. A phase consists of 20 periods. In

phase one, the subjects choose a number between 0 and 20 in each period. The subjects

do not know that this number is a contribution choice. The instructions tell them that

the aim of the experiment is the study of learning behavior. We inform the subjects that

their payoff is determined by their choice and “other factors that might change between

periods”.

At the end of phase one, the subjects in the within-subject treatment are informed that

a new experiment (phase two) will start. Only at this stage are they given instructions

for a standard linear public goods game, where they are assigned to groups of four. In the

control treatment subjects only play the standard public goods game with instructions.

This design enables us to test if the fact that the subjects played phase one first altered

the behavior in the following standard public goods game. We did not find any differences

in behavior and therefore are confident that our within-subject analysis is valid. We will

provide the details in the next section.

The structure of the experimental public goods game was as follows. Every period

the subjects receive 20 points as their initial endowment. Every point invested into the

Group Exchange pays 0.4 cents to every subject in the group, while every point kept pays

1 cent only to the subject. The underlying structure of phase two is identical to that of

phase one except that the subjects did not know that they played a public goods game

in phase one, while they did know in phase two. In what follows we refer to phase one
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as the learning condition and to phase two (and the control treatment) as the standard

condition.

3 Results

We ran 5 sessions with between 16 and 20 subjects each. In total we had 15 groups (60

subjects) participating in the within-subject condition and 9 groups (36 subjects) in the

control. The subjects were first-year students at the University of Adelaide from a variety

of fields, who had never before been in an experiment. The experiments were conducted

with the software package z-Tree (Urs Fischbacher 2007). The experiment lasted between

25 (control treatment) and 35 minutes (both phases), and the average subject earned the

equivalent of US$ 10.1 (in Australian Dollars) within this time.

Figure 1 shows the time series of the average contributions in the learning condition

as a percentage of the endowment. The black line shows the average observed contribu-

tion behavior. As one would expect for a situation where subjects cannot understand the

implications of their behavior (see the introductory quote by Ledyard 1995), the average

contributions start out around the midpoint of the admissible action space. With repeated

interaction, however, contributions show a drop off from 53.4 percent of the total endow-

ment in period one to 35.7 percent in period 20. On average (using a linear regression)

contributions drop by −0.18 units per period. This negative time trend is significant at

the 1-percent level.4

The observation that chosen numbers decrease with repetition in the learning condition

just as contributions do in the standard public goods game provides support for the claim

that learning can be mistaken for conditional cooperation. To gain some more confidence

that our learning condition accurately picks up learning dynamics – and nothing else – we

compare the actual behavior to the simulated outcomes of a simple learning model. The

model is in the tradition of reinforcement learning. Individuals decide over their choices

by comparing the payoffs resulting from their last two choices.5

The choice rule is simple: A subject only chooses numbers that are closer to the

number that led to the higher payoff in the previous two periods. For simplicity we

assume that subjects randomize over all choices that are in the remaining domain with

4We use robust standard errors adjusted for clustering on groups throughout this paper.
5We use such a short memory for two reasons: i) in the instructions we inform subjects that the

environment might change over time and ii) Rajiv Sarin and Farshid Vahid (2004) have shown that the

use of rapidly decaying past attractions improves the fit of reinforcement-learning models.
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equal probability. In cases where a subject is not able to learn anything from her last

choices – either the last two choices or the last two payoffs are equal – a subject randomizes

over the unrestricted domain. A more detailed description of the model can be found in

Appendix I.

The grey line in Figure 1 shows the result of simulated behavior from the model. We

simulated 5000 groups. As the starting values are not determined endogenously in the

model, we drew them from the empirical distributions of the real contributions observed

in the two first periods. We see that a model as simple as ours already does very well

at tracking the behavior in the learning condition. Hence, we feel confident to conclude

that our learning condition isolated learning dynamics from the dynamics generated by

strategic behavior of any kind.

Figure 1

Time series of average contributions in the learning condition (phase one)

Our next step is to quantify how much of the downward trend of contributions in the

standard public goods game (phase two and the control treatment) is due to the reduction

of confusion.6 In Figure 2, the black line plots the average contributions of the subjects in

the standard condition. Obviously, the rate at which subjects reduce their contributions

is greater than in phase one. In the standard condition, contributions drop from 57.7

percent of the total endowment in period 1 to 16.6 percent in period 20.

6We pool the data from phase two and the control treatment, as we could not find significant differ-

ences. We shortly discuss this when we present our main regression below.
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As before, the grey line in Figure 2 shows the choices simulated using the learning

model with the starting values drawn from the empirical distributions of the first two pe-

riods. The learning model does not fit the data well. The dynamics in the standard public

goods game appear to be different than the simulated reinforcement-learning dynamics,

which performed so well at explaining behavior in the learning condition. A Wilcoxon

matched-pairs test (for the subjects that played both phases) confirms that the deviations

of the average group contributions from the simulated contribution averages summed over

the 20 periods are significantly smaller in the learning condition (p < 0.01, N = 15).7

The analysis above shows that a reinforcement-learning model explains the dynamics

in the learning condition, while it fails to explain all the dynamics in the standard public

goods game. The learning speed predicted by the model is insufficient to explain actual

behavior in the standard condition. Therefore confusion defined as ignorance cannot

explain all of the decrease in cooperation in the public goods game. Even after controlling

for learning dynamics some decay in contributions still remains.8 In the standard condition

the linear time trend is −0.44, which is significantly different both from zero and −0.18

(the time trend estimated for phase one).

To summarize: Assuming that confusion in the human condition takes the form of

ignorance, we conclude that the reduction of confusion accounts for −0.18/ − 0.44 = 41

percent of the total decrease in cooperation. From our discussion above, this figure gives

a lower bound for the true impact of learning on contribution dynamics. This result is in

contrast to the 100 percent contribution of learning found by HK, which we consider an

upper bound.

Given our results, the lower bound approach of the influence of confusion on contribu-

tion dynamics does not rule out the conventional belief that (at least some of) the decay

observed in public goods games is due to conditional cooperation. So we conduct further

tests and compare the correlation between current contributions and past contributions

of other group members across treatments. This will show if reinforcement learning can

generate correlation patterns, which are usually regarded as evidence for conditional co-

operation. For this purpose, we run the following regression:

ci
t = β0 + β1c

i
t−1 + β2c

−i
t−1 + β4t + εi

t,

where ci
t is the subject’s current contribution, c−i

t−1 is the average declaration of the other

7The average mean square error of the simulation is more than four times larger in phase two (3.66

vs. 0.82 points).
8Taking the difference between the real and simulated contributions in Figure 2 reveals that the

remaining dynamics still point downwards.

7



Figure 2

Time series of average contributions in the standard condition

group members in the past period, t is a time trend, and εi
t denotes the error term. Pre-

vious research has taken a positively significant β2 in the standard public goods game as

evidence for social preferences in the guise of conditional cooperation, as it indicates that

variation in the past contribution of the other group members influences the own contri-

bution in the same direction (e.g., Rachel Croson 1998). Initially, we ran this regression

separately for phase one, phase two and the control treatment. Then we combined the

variance-covariance matrices using seemingly unrelated regression, allowing for clustering

on groups and followed by a Chow test establishing if the coefficients are jointly different

among the three treatments. We found that the coefficients from the learning condition

are significantly different to those from both of the treatments where a standard public

goods game was played (p < 0.01), while we could not find a significant difference between

the two public goods treatments (phase two and the control treatment, p > 0.23). We

conclude that a) behavior in the learning condition differs from that in the public goods

games, while b) behavior in the public goods games are not influenced by the experience

of having played the learning condition before. Below we present regressions where we

pool the data from the standard public goods games and test if the estimate of β2 differs

across the learning and standard condition.

Table 1 shows the results. The p-values in parentheses are calculated from robust

standard errors accounting for clustering on groups. For the standard condition the esti-
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Table 1 OLS regression with robust standard errors. Dependent variable: ci
t

Standard Learning

const 3.05 7.35

(< 0.01) (< 0.01)

ci
t−1 0.58 0.21

(< 0.01) (< 0.01)

c−i
t−1 0.16 0.04

(< 0.01) (> 0.43)

t −0.14 −0.13

(< 0.01) (< 0.01)

N = 1824 N = 1140

F(3,23)=458.21 F (3, 14) = 21.13

r2 = 0.48 r2 = 0.07

mated coefficient for β2 is significantly positive, which is consistent with previous studies.

Without further control, it is not possible to decide if the positive β2 is due to conditional

cooperation, learning, or a compound of both. We employ the same regression for the

data generated in the learning condition in order to isolate the impact of confusion. We

find that there the estimate of β2 is insignificant. Given our assumption relating to the

nature of confusion, we can conclude that the serial correlation in the standard public

goods game cannot be explained by the reduction of confusion, as reinforcement learn-

ing cannot reproduce the correlation structure usually taken as evidence for conditional

cooperation.

A further interesting result of our regression is that the residual time trend in the

standard condition after controlling for serial correlation is very close to that in the

learning condition. This suggests that the decay that cannot be attributed to conditional

cooperation is similar in both treatments. If our assumptions on confusion are correct

then this decay represents the common influence of the reduction of confusion in both

treatments.9

A last test explicitly takes into account individual heterogeneity with respect to social

preferences and learning by exploiting the within-subject variation between phase one and

9Note also that for the learning condition the regression does not explain much of the variance (r2 =

0.07), while it fits the data well (r2 = 0.45) for the standard condition.
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phase two. Appendix III contains a table indicating whether a subject’s contributions are

significantly correlated with past contributions of other group members for both treat-

ments (Spearman rank-correlation coefficient, 5-percent level). In the learning condition

there are only four out of 60 subjects (6.6 percent) who exhibit a significantly positive

correlation, whereas in the standard condition 32 of 60 (53.3 percent) do so. The subjects

identified as conditional cooperators due to positive correlation in the standard condition

are therefore unlikely to be just confused subjects who learn. Only 12.5 percent of the

subjects (four out of 32) showing positive correlation in the standard condition also show

a positive correlation in the learning condition.

4 Conclusion

In this paper we presented a novel experiment to identify the influence of confusion on the

dynamics in public goods experiments. Our study complements the work of Houser and

Kurzban (2002) who suggested that 100 percent of the decay in contributions is due to the

reduction of confusion. They used a learning friendly full-information individual-choice

problem to isolate the effects of confusion by framing it as a public goods game. We argue

that their findings can be considered an upper bound. In contrast, we induce confusion

by withholding information, which does not remove the interactive structure of a public

goods game but makes it much harder to learn. Our results can therefore be interpreted as

a lower bound of the impact of confusion. We find that the reduction of confusion causes

a decay in contributions over time, as did Houser and Kurzban. However, learning only

accounts for 41 percent of the total decay. Furthermore, we could not find evidence for

the reduction of confusion producing correlation patterns of contributions within groups

that could be wrongly attributed to conditional-cooperation behavior. Consequently, we

believe part of the dynamics in public goods games is due to conditional cooperators

reacting to the low contributions of other group members.

References

Andreoni, James. 1988. “Why Free Ride? Strategies and Learning in Public Goods

Experiments.” Journal of Public Economics, December 1988, 37(3), pp. 291-304.

Andreoni, James. 1995.“Cooperation in Public-Goods Experiments: Kindness or Con-

fusion?” American Economic Review, September 85(4), pp. 891-904.

10



Croson, Rachel T. A. 1998. “Theories of Altruism and Reciprocity: Evidence from

Linear Public Goods Games.” Working Paper, The Wharton School, University of Penn-

sylvania.

Ferraro, Paul J. and Christian A. Vossler 2006. “Stylized Facts and Identification

in Public Goods Experiments: The Confusion Confound.” Working Paper, Georgia State

University.

Fischbacher, Urs. 2007.“Z-Tree: Zurich Toolbox for Readymade Economic Experi-

ments.” Experimental Economics 10(2), pp. 171-8.
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Appendix I: The Learning Model

Denote the contribution of person i ∈ {1, 2, 3, 4} in period t ∈ {1, 2, .., 20} as ci
t. The

individual uses the payoff p and the own choices of the last two periods to determine the

contribution in the current period (if possible). So

ci
t = f(ci

t−1, c
i
t−2, p

i
t−1, p

i
t−2).

After having observed the two last outcomes given their choices made, individuals only

consider choices which are closer to the choice that resulted in a higher payoff. Suppose

ci
t−1 was greater than ci

t−2 and the payoff in period t− 1 was greater than in period t− 2,

then the individual only chooses values in the interval from the midpoint between the

two previous choices to the maximum choice (20). For equal profits in periods t− 1 and

t − 2 the support is [0, 20], as then the history contains no information about in which

direction to go. Moreover the support will also be the whole spectrum of possible choices

if the previous two choices were identical.

To find the region of choices (the support) that satisfies these conditions given the

history, define the changes in choices and payoffs between periods t− 1 and t− 2 as

∆pi
t ≡ pi

t−2 − pi
t−1

∆ci
t ≡ ci

t−2 − ci
t−1

Then we can introduce a variable di
t that tells us whether the individual in period t wants

to choose a number closer to the higher (di
t = 1) or the lower of the previous choices

(di
t = −1):

di
t = sign(∆pi

t ·∆ci
t).

Note that if either the profits or the previous choices have not changed between periods

t− 2 and t− 1 then we have di
t = 0. Denoting the admissible support for period t as Ci

t

then we have:

Ci
t =





[
0,

ci
t−1+ci

t−2

2

]
if di

t = −1[
ci
t−1+ci

t−2

2
, 20

]
if di

t = 1

[0, 20] if di
t = 0

Next we have to specify which point within the admissible range will be chosen. The

simplest assumption is that the individual draws from a uniform distribution with support

Ci
t :

ci
t ∼ U on Ci

t
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Analyzing the data we found that the median of choices for both experimental conditions is

approximately in the middle of the support, which is the case under a uniform distribution.

However, we observed quite a few focal points (bottom or top of the range), which cannot

be modeled with the uniform distribution. The differences mainly occurred in the full-

information treatment.

The remaining question is the choice behavior of the individual in periods 1 and 2.

In these early periods there is not enough information available to use reinforcement-

learning. We follow the widespread approach and use the observed choice distribution in

those first two periods. The first two choices are assumed to be driven by some factors

exogenous to our learning model, such as focal points.

Basically, the model assumes that individuals believe in a “linear” world. This is

implemented by the assumption that individuals choose values closer to the values that

have been successful in the past. The belief that the world is linear is correct here as the

underlying public goods game is indeed linear in the own choice. Another reason why

we chose this learning rule is that it is consistent with the world the subjects know in

the treatment with full information. Hence, such a learning rule should be most suited

to explain choice behavior in the full information treatment if reciprocity motives are

absent. Other more sophisticated beliefs about the underlying structure (like a quadratic

relationship between choice and payoff) could lead to experimenting, where people choose

numbers which are the extreme opposite of the previously more successful choice.

Appendix II:

1. Instructions to subjects for phase one.

General Information

You are participating in an experiment on learning behaviour. In the experi-

ment you earn points, which will be converted into real money at the end of

the experiment with the following exchange rate:

100 points = AUD 1.25.

Your earnings are paid in cash at the end of the experiment. Please note:

It is strictly forbidden to communicate with other participants during the

experiment. You are not allowed to speak with other participants. If you

have questions during the experiment please raise your arm and somebody

will come and help you.
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The timing of the experiment

The proceedings for the 20 periods are:

At the beginning of each period you see the following screen:

In every period you just have to make a single decision. You simply have to

choose a number between 0 and 20. After you have entered your number and

have clicked “OK” you will see the following result screen:

Here you can see your previous decision and the number of points you receive.

14



How the outcome is determined: Your income depends on the number you have

entered. However, other factors may influence your income. These factors may

change from period to period. This means that a certain number you choose

does not lead to the same outcome all the time.

2. Instructions to subjects for phase two and for the control treat-

ment.

Experimental Instructions

Thank you for participating in the experiment. If you read these instructions

carefully and follow all rules, you can earn money. The money will be paid

out to you in cash immediately after the experiment. During the experiment

we shall not speak of Dollars but rather of points. Points are converted to

Dollars at the following exchange rate:

100 Points = AUD 1.25

Please note: It is forbidden to speak to other participants during the ex-

periment. If you have any question, please ask us. We will gladly answer

your questions individually. It is very important that you follow this rule.

Otherwise, we shall have to exclude you from the experiment and from all

payments.

Participants of this experiments are randomly assigned into groups of 4 mem-

bers, i.e., there are three more persons forming a group together with you.

The composition of groups will remain the same during the whole experiment,

i.e. there will always be the same persons in your group. The identity of your

group members will not be revealed to you at any time. At the start of each

period, each participant gets 20 points. We will refer to these points as your

endowment. Your task is it to decide, how many of your 20 points you want

to contribute to a project or to keep for yourself.

Your income consists of two parts:

1. Points that you keep

2. Your “income from the project”. This income is calculated as follows:

Your income from the project = 0.4× Sum of contributions of all group mem-

bers to the project

15



The income of the other members of your group is determined in the same way,

i.e. each group member receives the same income from the project. Suppose,

for example, that the total contributions to the project by all members in your

group sum up to 60. In this case you and every other member of your group

receives 0.4 × 60 = 24 points as income from the project. Suppose that you

and the other 3 members of your group in total contribute only 10 points to

the project. In this case every group member receives 0.4 × 10 = 4 points as

income from the project.

For each point that you keep for yourself you earn an income of one point. If

you contribute that point to the project, instead, the sum of contributions to

the project would rise by one point, and your income from the project would

rise by 0.4× 1 = 0.4 points. However, the income of the other group members

would also rise by 0.4 points, such that the total income of the group would

rise by 4×0.4 = 1.6 points. Your contribution to the project, therefore, raises

the income of the other members of your group. On the other hand, you earn

from each point that other members of your group contribute to the project.

For each point that another group member contributes, you earn 0.4×1 = 0.4

points.

You take your decision via the computer. After all participants have made

their contributions a new period starts, in which you decide again how many

of your 20 points you want to contribute to the project. In total there will be

20 periods.
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Appendix III: Individual correlation between own and other group members’ contribu-

tions in the learning (phase 1) and standard condition (phase 2): Spearman rank corre-

lation coefficient; positive and significant (+); negative and significant (–); insignificant

(0); α = 0.05.

Subject Learning Standard Subject Learning Standard

1 0 0 31 0 +

2 0 – 32 0 +

3 0 0 33 0 +

4 0 0 34 0 +

5 + + 35 0 0

6 + + 36 0 +

7 + + 37 0 +

8 0 0 38 0 +

9 0 0 39 0 0

10 0 0 40 0 +

11 0 0 41 0 +

12 0 0 42 0 0

13 0 0 43 0 0

14 0 + 44 0 +

15 0 + 45 0 +

16 0 + 46 0 0

17 0 + 47 0 0

18 0 + 48 0 0

19 0 + 49 0 +

20 0 + 50 0 0

21 0 + 51 0 0

22 + + 52 0 0

23 0 + 53 0 +

24 0 0 54 0 +

25 0 0 55 0 0

26 0 0 56 0 +

27 0 0 57 0 0

28 0 + 58 0 0

29 0 + 59 0 +

30 0 + 60 0 0
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