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Abstract

This paper develops an analytical model of contagion in �nancial networks with

arbitrary structure. We explore how the probability and potential impact of contagion

is in�uenced by aggregate and idiosyncratic shocks, changes in network structure, and

asset market liquidity. Our �ndings suggest that �nancial systems exhibit a robust-yet-

fragile tendency: while the probability of contagion may be very low, the e¤ects could

be extremely widespread should problems occur. The resilience of the system to large

shocks in the past is also unlikely to prove a reliable guide to future contagion.
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1. Introduction

In modern �nancial systems, an intricate web of claims and obligations links the

balance sheets of a wide variety of intermediaries, such as banks and hedge funds,

into a network structure. The recent advent of sophisticated �nancial products,

such as credit default swaps and collateralised debt obligations, has heightened

the complexity of these balance sheet connections still further, making it di¢ cult

to assess the potential for contagion associated with the unexpected failure of

an individual �nancial institution or from an aggregate shock to the system as a

whole.1

The interdependent nature of �nancial balance sheets also creates an environ-

ment for feedback elements to generate ampli�ed responses to any shock to the
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�nancial system. As Cifuentes et.al (2005) and Shin (2008) stress, the knock-on

e¤ect of an initial default of a �nancial institution on asset prices can trigger fur-

ther rounds of default as other �nancial entities are forced to write down the value

of their assets. Contagion due to the direct interlinkages of claims and obliga-

tions may thus be reinforced by contagion on the asset side of the balance sheet �

particularly when the market for key �nancial system assets is illiquid.

The seminal contribution to the analysis of contagion through direct linkages

in �nancial systems is that of Allen and Gale (2000).2 Using a network structure

involving four banks, they demonstrate that the spread of contagion depends cru-

cially on the pattern of interconnectedness between banks. When the network is

�complete�, with all banks having exposures to each other such that the amount

of interbank deposits held by any bank is evenly spread over all other banks, the

impact of a shock is readily attenuated. Every bank takes a small �hit�and there

is no contagion. By contrast, when the network is �incomplete�, with banks only

having exposures to a few counterparties, the system is more fragile. The ini-

tial impact of a shock is concentrated amongst neighbouring banks. Once these

succumb, the premature liquidation of long-term assets and the associated loss of

value bring previously una¤ected banks into the front line of contagion. In a sim-

ilar vein, Freixas et.al (2000) show that tiered systems with money-centre banks,

where banks on the periphery are linked to the centre but not to each other, may

also be susceptible to contagion.3

2Other strands of the literature on �nancial contagion have focussed on the role of liquidity
constraints (Kodres and Pritsker, 2002), information asymmetries (Calvo and Mendoza, 2000),
and wealth constraints (Kyle and Xiong, 2001). As such, their focus is less on the nexus between
network structure and �nancial stability. Network perspectives have also been applied to other
topics in �nance: for a comprehensive survey of the use of network models in �nance, see Allen
and Babus (2008).

3These papers assume that shocks are unexpected; an approach we follow in our analysis.
Brusco and Castiglionesi (2007) model contagion in �nancial systems in an environment where
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The generality of insights based on simple networks with rigid structures to

real-world contagion is clearly open to debate. Moreover, whilst not being so styl-

ised, models with endogenous network formation (e.g. Leitner, 2005; Castiglionesi

and Navarro, 2007) do not allow for completely arbitrary structures either. And,

by and large, the existing literature fails to distinguish the probability of conta-

gious default from its potential spread.

Increasingly, however, the identi�cation of the probability and impact of rare

�nancial shocks is assuming centre-stage in policy debate. Central banks, for

example, are increasingly trying to articulate the probability and impact of key

risks to the �nancial system in their Financial Stability Reports.4 Moreover, the

complexity of �nancial systems means that policymakers have scant information

about the true linkages between �nancial intermediaries. Given the speed with

which shocks propagate, there is, therefore, a need to develop tools that permit

a study of the transmission of unexpected shocks through a given, but arbitrary,

network structure. Recent events in the global �nancial system have only served

to emphasise this.

Our paper takes up this challenge by introducing techniques from the liter-

ature on complex systems (Strogatz, 2001) into a �nancial system setting. The

analytical techniques we use have yet to be applied to economic problems and

hold out the possibility of new, potentially novel insights. In what follows, we

draw on these techniques to model contagion stemming from unexpected shocks

contracts are written contingent on the realisation of the liquidity shock. As in Allen and Gale
(2000), they construct a simple network structure of four banks. They suggest, however, that
greater connectivity could serve to enhance contagion risk. This is because the greater insurance
provided by additional �nancial links may be associated with banks making more imprudent
investments. And, with more links, if a bank�s gamble does not pay o¤, its failure has wider
rami�cations.

4See, for example, Bank of England (2007).
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in complex �nancial networks with arbitrary structure, and then use numerical

simulations to illustrate and clarify the intuition underpinning our analytical re-

sults. Our framework explicitly accounts for the nature and scale of aggregate and

idiosyncratic shocks and allows asset prices to interact with balance sheets. The

complex network structure and interactions between �nancial intermediaries make

for non-linear system dynamics, and our model isolates the probability and spread

of contagion when claims and obligations are interlinked. In so doing, we provide

an alternative perspective on the question of whether the �nancial system acts as

shock absorber or as an ampli�er.

We �nd that �nancial systems exhibit a robust-yet-fragile tendency. While

greater connectivity reduces the likelihood of contagion, the impact on the �nan-

cial system, should problems occur, could be on a signi�cantly larger scale than

hitherto. The model also highlights how a priori indistinguishable shocks can have

very di¤erent consequences for the �nancial system. The resilience of the network

to large shocks in the past is no guide to future contagion, particularly if shocks

hit the network at particular pressure points associated with underlying structural

vulnerabilities.

The intuition underpinning these results is straightforward. In a more con-

nected system, the counterparty losses of a failing institution can be more widely

dispersed to, and absorbed by, other entities. So increased connectivity and risk

sharing may lower the probability of contagion. But, conditional on the failure of

one institution triggering contagious defaults, a higher number of �nancial link-

ages also increases the potential for contagion to spread more widely. In particular,

greater connectivity increases the chances that institutions which survive the ef-

fects of the initial default will be exposed to more than one defaulting counterparty
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after the �rst round of contagion, thus making them vulnerable to a second-round

default. The impact of any crisis that does occur could, therefore, be larger.

Our model draws on the mathematics of complex systems.5 This literature

describes the behaviour of connected groups of nodes in a network and predicts

the size of a susceptible cluster, i.e. the number of vulnerable nodes reached

via the transmission of shocks along the links of the network. The approach

relies on specifying all possible patterns of future transmission. Callaway et.al

(2000), Newman et.al (2001) and Watts (2002) show how probability generating

function techniques can identify the number of a randomly selected node�s �rst

neighbours, second neighbours, and so on. Recursive equations are constructed

to consider all possible outcomes and obtain the total number of nodes that the

original node is connected to �directly and indirectly. Phase transitions, which

mark the threshold(s) for extensive contagious outbreaks can then be identi�ed.

In what follows, we construct a simple �nancial system involving entities with

interlocking balance sheets and use these techniques to model the spread and

probability of contagious default following an unexpected shock, analytically and

numerically.6 Unlike the generic, undirected graph model of Watts (2002), our

model provides an explicit characterisation of balance sheets, making clear the

direction of claims and obligations linking �nancial institutions. It also includes

asset price interactions with balance sheets, allowing the e¤ects of asset-side con-

tagion to be clearly delineated. We illustrate the robust-yet-fragile tendency of

�nancial systems and analyse how contagion risk changes with capital bu¤ers, the

5See Strogatz (2001) and Newman (2003) for authoritative and accessible surveys. Giesecke
and Weber (2004) study contagion using the �voter�model of interacting particle systems. But
their network is constrained to a lattice structure and balance sheets are not de�ned.

6Eisenberg and Noe (2001) demonstrate that, following an initial default in such a system, a
unique vector which clears the obligations of all parties exists. However, they do not analyse the
e¤ects of network structure on the dynamics of contagion.
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degree of connectivity, and the liquidity of the market for failed banking assets.7

Our framework assumes that the network of interbank linkages forms randomly

and exogenously: we leave aside issues related to endogenous network formation,

optimal network structures and network e¢ ciency.8 We also model the contagion

process in a relatively mechanical fashion, holding balance sheets and the size

and structure of interbank linkages constant as default propagates through the

system. Arguably, in normal times in developed �nancial systems, banks are so

robust that very minor variations in their default probabilities do not a¤ect the

decision of whether or not to lend to them in interbank markets. Therefore, it

may be reasonable to suppose that an (exogenous) random network develops in

normal times. Meanwhile, in crises, contagion is likely to spread very rapidly

through the �nancial system, meaning that banks are unlikely to have time to

alter their behaviour before they are a¤ected �as such, it may be appropriate to

assume that the network remains static. Note also that banks have no choice over

whether they default. This precludes the type of strategic behaviour discussed by

Morris (2000), Jackson and Yariv (2007) and Galeotti and Goyal (2007), whereby

nodes can choose whether or not to adopt a particular state (e.g. adopting a new

technology).

7Recent work by Nier et.al (2007) also simulates the e¤ects of unexpected shocks in �nancial
networks. But their results are strictly numerical: they do not consider the underlying analytics
of the complex (random graph) network with which they are dealing and, hence, are unable
to properly explain their �ndings. And their approach does not distinguish the probability of
contagion from its potential spread.

8See Leitner (2005), Gale and Kariv (2007), Castiglionesi and Navarro (2007) and the survey
by Allen and Babus (2008) for discussion of these topics. Leitner (2005) suggests that linkages
which create the threat of contagion may be optimal. The threat of contagion and the impossibil-
ity of formal commitments mean that networks develop as an ex ante optimal form of insurance,
as agents are willing to bail each other out in order to prevent the collapse of the entire system.
Gale and Kariv (2007) study the process of exchange on �nancial networks and show that when
networks are incomplete, substantial costs of intermediation can arise and lead to uncertainty of
trade as well as market breakdowns.
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Our approach has some similarities to the epidemiological literature on the

spread of disease in networks (see, for example, Pastor-Satorras and Vespignani,

2001, Newman, 2002, Jackson and Rogers, 2007, or the overview by Meyers, 2007).

But there are two key di¤erences. First, in epidemiological models, the suscep-

tibility of an individual to contagion from a particular infected �neighbour�does

not depend on the health of their other neighbours. By contrast, in our setup,

contagion to a particular institution following a default is more likely to occur if

another of its counterparties has also defaulted. Second, in most epidemiologi-

cal models, higher connectivity simply creates more channels of contact through

which infection could spread, increasing the potential for contagion. In our model,

however, greater connectivity also provides counteracting risk-sharing bene�ts as

exposures are diversi�ed across a wider set of institutions.

The structure of the paper is as follows. Section 2 describes the structure of the

�nancial network, the transmission process for contagion, and analytical results

characterising a default cascade. Section 3 uses numerical simulations to study

the e¤ects of failures of individual institutions and articulate the likelihood and

extent of contagion. Section 4 considers the impact of liquidity e¤ects on system

stability. Section 5 discusses points of contact with the empirical literature on

interbank contagion being pursued by central banks. A �nal section concludes.

2. The Model

2.1. Network Structure

Consider a �nancial network in which n �nancial intermediaries, �banks� for

short, are randomly linked together by their claims on each other. In the language
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of graph theory, each bank represents a node on the graph and the interbank

exposures of bank i de�ne the links with other banks. These links are directed,

re�ecting the fact that interbank exposures comprise assets as well as liabilities.

Figure 1 shows an example of a directed �nancial network in which there are �ve

banks.

A crucial property of graphs such as those in Figure 1 is their degree distrib-

ution. In a directed graph, each node has two degrees, an in-degree, the number

of links that point into the node, and an out-degree, which is the number pointing

out. Incoming links to a node or bank re�ect the interbank assets/exposures of

that bank, i.e. monies owed to the bank by a counterparty. Outgoing links from a

bank, by contrast, correspond to its interbank liabilities. In what follows, the joint

distribution of in- and out-degree governs the potential for the spread of shocks

through the network. A feature of our analysis is that this joint degree distrib-

ution, and hence the structure of the links in the network, is entirely arbitrary,

though a speci�c distributional assumption is made in our numerical simulations

in section 3.

Suppose that the total assets of each bank are normalised to unity and that

these consist of interbank assets, AIBi , and illiquid external assets, such as mort-

gages, AMi . Then

AIBi +AMi = 1 8 i: (1)

We assume that the total interbank asset position of every bank is evenly distrib-

uted over each of its incoming links and is independent of the number of links the

bank has (if a bank has no incoming links, AIBi = 0 for that bank). Although

these assumptions are stylised, they provide a useful benchmark which emphasises
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the possible bene�ts of diversi�cation and allows us to highlight the distinction

between risk sharing and risk spreading within the �nancial network. In partic-

ular, they allow us to show that widespread contagion is possible even when risk

sharing in the system is maximised. We consider the implications of relaxing these

assumptions in section 2.5.

Since every interbank asset is another bank�s liability, interbank liabilities,

LIBi , are endogenously determined. Apart from interbank liabilities, the only

other component of a bank�s liabilities are exogenously given customer deposits,

Di. The condition for bank i to be solvent is therefore

(1� �)AIBi + qAMi � LIBi �Di > 0; (2)

where � is the fraction of banks with obligations to bank i that have defaulted,

and q is the resale price of the illiquid asset. The value of q may be less than

one in the event of asset sales by banks in default, but equals one if there are

no ��re sales�. We make a zero recovery assumption, namely that when a linked

bank defaults, bank i loses all of its interbank assets held against that bank.9 The

solvency condition can also be expressed as

� <
Ki � (1� q)AMi

AIBi
, for AIBi 6= 0; (3)

where Ki = A
IB
i +AMi � LIBi �Di is the bank�s capital bu¤er, i.e. the di¤erence

between the book value of its assets and liabilities.

To model the dynamics of contagion, we suppose that all banks in the network

are initially solvent and that the network is perturbed at time t = 1 by the

9This assumption is likely to realistic in the midst of a crisis: in the immediate aftermath
of a default, the recovery rate and the timing of recovery will be highly uncertain and banks�
funders are likely to assume the worst-case scenario. Nevertheless, in our numerical simulations,
we show that our results are robust to relaxing this assumption.
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initial default of a single bank. Although purely idiosyncratic shocks are rare, the

crystallisation of operational risk (e.g. fraud) has led to the failure of �nancial

institutions in the past (e.g. Barings). Alternatively, bank failure may result from

an aggregate shock which has particularly adverse consequences for one institution:

this can be captured in the model through a general erosion in the stock of illiquid

assets or, equivalently, capital bu¤ers across all banks, combined with a major loss

for one particular institution.

Let ji denote the number of incoming links for bank i. Since linked banks each

lose a fraction 1=ji of their interbank assets when a single counterparty defaults, it

is clear from (3) that the only way default can spread is if there is a neighbouring

bank for which

Ki � (1� q)AMi
AIBi

<
1

ji
: (4)

We de�ne banks that are exposed in this sense to the default of a single neigh-

bour as vulnerable and other banks as safe. The vulnerability of a bank clearly

depends on its in-degree, j. Speci�cally, a bank with in-degree j is vulnerable with

probability

�j = P

�
Ki � (1� q)AMi

AIBi
<
1

j

�
8 j � 1: (5)

Further, the probability of a bank having in-degree j, out-degree k and being

vulnerable is �j � pjk, where pjk is the joint degree distribution of in- and out-

degree.

The model structure described by equations (1) to (5) captures several features

of interest in systemic risk analysis. First, as noted above, the nature and scale

of adverse aggregate or macroeconomic events can be interpreted as a negative

shock to the stock of illiquid assets, AMi , or equivalently, to the capital bu¤er,
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Ki. Second, idiosyncratic shocks can be modelled by assuming the exogenous

default of a bank. Third, the structural characteristics of the �nancial system

are described by the distribution of interbank linkages, pjk. And �nally, liquidity

e¤ects associated with the potential knock-on e¤ects of default on asset prices are

captured by allowing q to vary. To keep matters simple, we initially �x q = 1,

returning later to endogenise it.

2.2. Generating Functions and the Transmission of Shocks

In su¢ ciently large networks, for contagion to spread beyond the �rst neigh-

bours of the initially defaulting bank, those neighbours must themselves have

outgoing links (i.e. liabilities) to other vulnerable banks.10 We therefore de�ne

the probability generating function for the joint degree distribution of a vulnerable

bank as

G(x; y) =
X
j;k

�j � pjk � xj � yk: (6)

The generating function contains all the same information that is contained in

the degree distribution, pjk, and the vulnerability distribution, �j , but in a form

that allows us to work with sums of independent draws from di¤erent probability

distributions. Speci�cally, for our purposes, it generates all the moments of the

degree distribution of only those banks that are vulnerable. Note that probability

generating functions are the discrete analogue of moment generating functions.

10 If the number of nodes, n, is su¢ ciently large, banks are highly unlikely to be exposed to
more than one failed bank after the �rst round of contagion, meaning that safe banks will never
fail in the second round. This assumption clearly breaks down either when n is small or when
contagion spreads more widely. However, the logic of this section still holds in both cases: in the
former, the exact solutions derived for large n will only approximate reality (this is con�rmed by
the numerical results in section 3); in the latter, the exact solutions will apply but the extent of
contagion will be a¤ected, as discussed further in section 2.4.
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The appendix provides a detailed description of their key properties, focussing on

those which are used in this paper.

Since every interbank asset of a bank is an interbank liability of another, every

outgoing link for one node is an incoming link for another node. This means that

the average in-degree in the network, 1n
P

i ji =
P

j;k jpjk, must equal the average

out-degree, 1n
P

i ki =
P

j;k kpjk. We refer to this quantity as the average degree

and denote it by

z =
X
j;k

jpjk =
X
j;k

kpjk: (7)

Using equation (7), the average degree of a vulnerable bank to other vulnerable

banks, zv, can be obtained from the generating function as

zv =
@G
@x

���
x;y=1

=
@G
@y

���
x;y=1

= �j � z: (8)

From G(x; y), we can de�ne a single-argument generating function, G0 (y), for

the number of links leaving a randomly chosen vulnerable bank. This is given by

G0 (y) = G (1; y)

=
X
j;k

�j � pjk � yk: (9)

Note that

G (1; 1) = G0 (1) (10)

=
X
j;k

�j � pjk

so that G0(1) yields the fraction of banks that are vulnerable.

We can also de�ne a second single-argument generating function, G1 (y), for the

number of links leaving a bank reached by following a randomly chosen incoming
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link. Because we are interested in the propagation of shocks from one bank to

another, we require the degree distribution, �j � rjk, of a vulnerable bank that

is a random neighbour of our initially chosen bank. The larger the in-degree of

this second bank, the more likely it is to be a neighbour and lie at the end of a

randomly chosen outward link.11 So the probability of choosing it is proportional

to jpjk and the corresponding generating function is

G1 (y) =
X
j;k

�j � rjk � yk =

P
j;k

�j � j � pjk � ykP
j;k

j � pjk
: (11)

We now describe the distribution of the cluster of vulnerable banks that can

be reached by following a randomly chosen directed link, following an initial de-

fault. The size and distribution of the vulnerable cluster characterises the spread

of default across the �nancial network. As Figure 2 illustrates, the pattern of

transmission can take many di¤erent forms. We can follow a randomly chosen

directed link and �nd a single bank at its end with no further outgoing connec-

tions emanating from it. This bank may be safe (s) or vulnerable (v). Or we may

�nd a vulnerable bank with one, two, or more links emanating from it to further

clusters. At this point, we assume that the links emanating from the defaulting

node are tree-like and contain no cycles or closed loops. This is solely to make

an exact solution possible: the thrust of the argument goes through without this

restriction and we do not apply it when conducting our numerical simulations in

section 3.

Let H1 (y) be the generating function for the probability of reaching an outgo-

ing cluster of given size by following a random outgoing link after an initial default.

As shown in Figure 2, the total probability of all possible forms can be represented

11See Feld (1991) and Newman (2003) for a detailed analysis of this point.
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self-consistently as the sum of probabilities of hitting a safe bank, hitting only a

single vulnerable bank, hitting a single vulnerable bank connected to one other

component, two other components, and so on. Each component which may be

arrived at is independent. Therefore, H1 (y) satis�es the following self-consistency

condition:

H1(y) = Pr [reach safe bank ] + y
X
j;k

�j � rjk � [H1 (y)]k ; (12)

where the leading factor of y accounts for the one vertex at the end of the initial

edge and we have used the fact that if a generating function generates the prob-

ability distribution of some property of an object, then the sum of that property

over m independent such objects is distributed according to the mth power of the

generating function (see the appendix). By using equation (11) and noting that

G1 (1) represents the probability that a random neighbour of a vulnerable bank is

vulnerable, we may write equation (12) in recursive form as

H1 (y) = 1�G1 (1) + yG1 (H1 (y)) : (13)

It remains to establish the distribution of outgoing vulnerable cluster sizes to

which a randomly chosen bank belongs. There are two possibilities that can arise.

First, a randomly chosen bank may be safe. Second, it may have in-degree j

and out-degree k, and be vulnerable, the probability of which is �j � pjk. In this

second case, each link leads to a vulnerable cluster whose size is drawn from the

distribution generated by H1 (y). So the size of the vulnerable cluster to which a

randomly chosen bank belongs is generated by

H0 (y) = Pr [bank safe] + y
X
j;k

vj � pjk � [H1 (y)]k

= 1�G0 (1) + yG0 [H1 (y)] : (14)
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And, in principle, we can calculate the complete distribution of cluster sizes by

solving equation (13) for H1 (y) and substituting the result into equation (14).

2.3. Phase Transitions

Although it is not usually possible to �nd a closed-form expression for the

complete distribution of cluster sizes in a network, we can obtain closed form

expressions for the moments of its distribution from equations (13) and (14). In

particular, the average vulnerable cluster size, S; is given by

S = H 0
0 (1) : (15)

Noting that H1 (y) is a standard generating function so that H1 (1) = 1 (see

the appendix), it follows from equation (14) that

H 0
0 (1) = G0 [H1 (1)] +G

0
0 [H1 (1)]H

0
1 (1) (16)

= G0 (1) +G
0
0 (1)H

0
1 (1) :

And we know from equation (13) that

H 0
1(1) =

G1 (1)

1�G01 (1)
: (17)

So, substituting equation (17) into (16) yields

S = G0 (1) +
G00 (1)G1 (1)

1�G01 (1)
(18)

From equation (18), it is apparent that the points which mark the phase tran-

sitions at which the average vulnerable cluster size diverges are given by

G01 (1) = 1; (19)
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or, equivalently, byX
j;k

j � k � vj � pjk = z (20)

where we have used equations (7) and (11).

The termG01 (1) is the average out-degree of a vulnerable �rst neighbour, count-

ing only those links that end up at another vulnerable bank. If this quantity is

less than one, all vulnerable clusters are small and contagion dies out quickly since

the number of vulnerable banks reached declines. But if G01 (1) is greater than

one, a �giant�vulnerable cluster �a vulnerable cluster whose size scales linearly

with the size of the whole network �exists and occupies a �nite fraction of the

network. In this case, system-wide contagion is possible: with positive probability,

a random initial default at one bank can lead to the spread of default across the

entire vulnerable portion of the �nancial network.

As z increases, the
P
j;k

j � k � pjk term in equation (20) increases monotonically

but vj falls. So equations (19) and (20) will either have two solutions or none at

all. In the �rst case, there are two phase transitions and a continuous window of

(intermediate) values of z for which contagion is possible. For values of z that lie

outside the window and below the lower phase transition, the
P
j;k

j � k � pjk term

is too small and the network is insu¢ ciently connected for contagion to spread

(consider what would happen in a network with no links); for values of z outside

the window and above the upper phase transition, the vj term is too small and

contagion cannot spread because there are too many safe banks.
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2.4. The Probability and Spread of Contagion

From a system stability perspective, we are primarily interested in contagion

within the giant vulnerable cluster. This only emerges for intermediate values of

z, and only when the initially defaulting bank is either in the giant vulnerable

cluster or directly adjacent to it. The likelihood of contagion is, therefore, directly

linked to the size of the vulnerable cluster within the window.12 Intuitively, near

both the lower and upper phase transitions, the probability of contagion must be

close to zero since the size of the vulnerable cluster is either curtailed by limited

connectivity or by the presence of a high fraction of safe banks. The probability of

contagion is thus non-monotonic in z: initially, the risk-spreading e¤ects stemming

from a more connected system will increase the size of the vulnerable cluster and

the probability of contagion; eventually, however, risk-sharing e¤ects that serve to

reduce the number of vulnerable banks dominate, and the probability of contagion

falls.13

Near the lower phase transition, the conditional spread of contagion (i.e. con-

ditional on contagion breaking out) corresponds to the size of the giant vulnerable

cluster. But, for higher values of z, once contagion has spread through the en-

tire vulnerable cluster, the assumption that banks are adjacent to no more than

one failed bank breaks down. So �safe�banks may be susceptible to default and

contagion can spread well beyond the vulnerable cluster. Therefore, the fraction

12Note that this is not given by (18) since this equation is derived on the assumption that
there are no cycles connecting subclusters. This will not hold in the giant vulnerable cluster.
13 In the special case of a uniform (Poisson) random graph in which each possible link is present

with independent probability p, an analytical solution for the size of the giant vulnerable cluster
can be obtained using techniques discussed in Watts (2002) and Newman (2003). Since this does
not account for the possibility of contagion being triggered by nodes directly adjacent to the
vulnerable cluster, it does not represent an analytical solution for the probability of contagion.
However, it highlights that the size of the giant vulnerable cluster, and hence the probability of
contagion, is non-monotonic in z.
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of banks a¤ected by episodes of contagion will be greater than the probability of

contagion breaking out, with the di¤erence being magni�ed as z increases. Indeed,

near the upper phase transition, the system exhibits a robust-yet-fragile tendency,

with episodes of contagion occurring rarely, but spreading widely when they do

take place.

From equation (20), the size of the contagion window is larger if, for a given

j, vj is larger. Greater levels of vulnerability also increase the size of the giant

vulnerable cluster and, hence, the probability of contagion within the range of

intermediate z values. Therefore, it is clear from equation (5) that an adverse

shock which erodes capital bu¤ers will both increase the probability of contagion

and extend the range of z for which contagious outbreaks are possible.

2.5. Relaxing the Diversi�cation Assumptions

In our presentation of the model, we assumed that the total interbank asset

position of each bank was independent of the number of incoming links to that

bank and that these assets were evenly distributed over each link. In reality, we

might expect a bank with a higher number of incoming links to have a larger total

interbank asset position. Intuitively, this would curtail the risk-sharing bene�ts

of greater connectivity because the greater absolute exposure associated with a

higher number of links would (partially) o¤set the positive e¤ects from greater

diversi�cation. But, as long as the total interbank asset position increases less

than proportionately with the number of links, all of our main results continue to

apply. In particular, vj will still decrease in z, though at a slower rate. As a result,

equation (20) will continue to generate two solutions, though in an extended range

of cases. The contagion window will thus be wider. On the other hand, if the total
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interbank asset position increases more than proportionately with the number of

links, vj will increase in z and greater connectivity will unambiguously increase

contagion risk. This latter case does not seem a particularly plausible description

of reality.

Assuming an uneven distribution of interbank assets over incoming links would

not change any of our fundamental results. In particular, vj would still decrease

in z, maintaining the possibility of two solutions to equation (20). But an uneven

distribution of exposures would make banks vulnerable to the default of particular

counterparties for higher values of z than would otherwise be the case. As a result,

the contagion window will be wider.

3. Numerical Simulations

3.1. Methodology

To illustrate our results, we calibrate the model and simulate it numerically.

Although the �ndings apply to random graphs with arbitrary degree distributions,

we assume a uniform (Poisson) random graph in which each possible directed link

in the graph is present with independent probability p. In other words, the network

is constructed by looping over all possible directed links and choosing each one to

be present with probability p �note that this algorithm does not preclude the

possibility of cycles in the generated network and thus encompasses all of the

structures considered by Allen and Gale (2000). Consistent with bankruptcy law,

we do not net interbank positions, so it is possible for two banks to be linked with

each other in both directions. The average degree, z, is allowed to vary in each

simulation. And although our model applies to networks of fully heterogeneous
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�nancial intermediaries, we take the capital bu¤ers and asset positions on banks�

balance sheets to be identical.14

As a benchmark, we consider a network of 1,000 banks. Clearly, the number of

�nancial intermediaries in a system depends on how the system is de�ned and what

counts as a �nancial intermediary. But several countries have banking networks

of this size, and a �gure of 1,000 intermediaries also seems reasonable if we are

considering a global �nancial system involving investment banks, hedge funds, and

other players.

The initial assets of each bank are chosen so that they comprise 80% external

assets and 20% interbank assets �the 20% share of interbank assets is broadly con-

sistent with the �gures for developed countries reported by Upper (2007). Banks�

capital bu¤ers are set at 4%, a �gure calibrated from data contained in the 2005

published accounts of a range of large, international �nancial institutions.15 Since

each bank�s interbank assets are evenly distributed over its incoming links, inter-

bank liabilities are determined endogenously within the network structure. And

the liability side of the balance sheet is �topped up�by customer deposits until the

total liability position equals the total asset position.

In the experiments that follow, we draw 1,000 realisations of the network for

each value of z. In each of these draws, we shock one bank at random, wiping

out all of its external assets �this type of idiosyncratic shock may be interpreted

14With heterogeneous banks, the critical Ki=A
IB
i ratio, which determines vulnerability in

equation (5), would vary across banks. In his undirected framework, Watts (2002) shows that
when thresholds such as this are allowed to vary, the qualitative theoretical results continue to
apply but the contagion window is wider. Intuitively, with heterogeneity, some banks remain
vulnerable even when relatively well connected because they have low capital bu¤ers relative to
their interbank asset position. Therefore, incorporating bank heterogeneity into our numerical
simulations would simply widen the contagion window. See also Iori et.al (2006) for a discussion
of how bank heterogeneity may increase contagion risk.
15Further details are available on request from the authors.
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as a fraud shock. The failed bank defaults on all of its interbank liabilities. As a

result, neighbouring banks may also default if their capital bu¤er is insu¢ cient to

cover their loss on interbank assets. Any neighbouring banks which fail are also

assumed to default on all of their interbank liabilities, and the iterative process

continues until no new banks are pushed into default.

Since we are only interested in the likelihood and conditional spread of system-

wide contagion, we wish to exclude very small outbreaks of default outside the

giant vulnerable cluster from our analysis. So, when calculating the probability

and conditional spread of contagion, we only count episodes in which over 5%

of the system defaults. As well as being analytically consistent on the basis of

numerical simulations, a 5% failure rate seems a suitable lower bound for de�ning

a systemic �nancial crisis.

3.2. Results

Figure 3 summarises the benchmark case. In this and all subsequent diagrams,

the extent of contagion measures the fraction of banks which default, conditional

on contagion over the 5% threshold breaking out.

The benchmark simulation con�rms the results and intuition of sections 2.3

and 2.4. Contagion only occurs within a certain window of z. Within this range,

the probability of contagion is non-monotonic in connectivity, peaking at approx-

imately 0.8 when z is between 3 and 4. Near the lower phase transition, the

conditional spread of contagion is approximately the same as the frequency of

contagion �in this region, contagion breaks out when any bank in the giant vul-

nerable cluster is shocked and spreads to the entire cluster, but not beyond.

For higher values of z, however, a large proportion of banks in the network fail
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when contagion breaks out. Of particular interest are the points near the upper

phase transition: when z > 8, contagion never occurs more than �ve times in 1,000

draws; but in each case where it does break out, every bank in the network fails.

This highlights that a priori indistinguishable shocks to the network have vastly

di¤erent consequences for contagion.

In Figure 4, we compare our benchmark results with the limiting case, since our

analytical results only strictly apply in the limit as n ! 1. Watts (2002) notes

that numerical results in random graph models approximate analytical solutions

in the vicinity of n = 10; 000. Figure 4 demonstrates that a smaller number of

nodes in the benchmark simulation does not fundamentally a¤ect the results: the

contagion window is widened slightly, but the qualitative results of the analytical

model remain intact.

Figure 5 considers the e¤ects of varying banks�capital bu¤ers. As expected,

an erosion of capital bu¤ers both widens the contagion window and increases the

probability of contagion for �xed values of z.16 For small values of z, the extent of

contagion is also slightly greater when capital bu¤ers are lower but, in all cases, it

reaches one for su¢ ciently high values of z. When the capital bu¤er is increased to

5%, however, this occurs well after the peak probability of contagion. This neatly

illustrates how increased connectivity can simultaneously reduce the probability

of contagion but increase its spread conditional on it breaking it out.

Figure 6 illustrates how changes in the average degree and capital bu¤ers jointly

a¤ect the expected number of defaults in the system. Since this diagram does not

isolate the probability of contagion from its potential spread, rare but high-impact

events appear in the benign (�at) region as the expected number of defaults in

16Reduced capital bu¤ers may also increase the likelihood of an initial default. Therefore, they
may contribute to an increased probability of contagion from this perspective as well.
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these cases is low. Figure 6 serves to highlight another non-linear feature of the

system: when capital bu¤ers are eroded to critical levels, the level of contagion

risk can increase extremely rapidly.

Finally, in Figure 7, we relax the zero recovery assumption. Instead, we as-

sume that when a bank fails, its default in the interbank market equals its asset

shortfall (i.e. its outstanding loss after its capital bu¤er is absorbed) plus half of

any remaining interbank liabilities, where the additional amount is interpreted as

re�ecting bankruptcy costs that are lost outside the system.17 As we might ex-

pect, this reduces the likelihood of contagion because fewer banks are vulnerable

when the recovery rate can be positive. But it is also evident that relaxing the

zero recovery assumption does not fundamentally a¤ect our broad results.

3.3. Interpretation and Discussion

Contagious crises occur infrequently in developed countries, suggesting that

�nancial systems are located near to, or above, the upper phase transition of

our model. The �ndings of Soramaki et.al (2007), who report average degrees in

�nancial systems of 15, are consistent with this. Given that banks�capital bu¤ers

are generally set to withstand 99.9% of credit risk shocks, it is not inconceivable

that a one-in-a-thousand event might be needed to trigger contagion.

Our framework implies that �nancial systems exhibit a robust-yet-fragile ten-

dency. Although the likelihood of contagion may be very low, its potential impact

could be extremely widespread. Moreover, even if contagion from idiosyncratic

17Since interbank assets make up 20% of each bank�s total asset position, interbank liabilities
must, on average, make up 20% of total liabilities. Therefore, for the average bank, if we take
(insured) customer deposits as senior, the maximum bankruptcy cost under this assumption is
10% of total assets / liabilities, which accords with the empirical estimates of bankruptcy costs
in the banking sector reported by James (1991).
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shocks never occurs when banks have relatively high capital bu¤ers, Figure 5

highlights that if an adverse aggregate shock, such as a macroeconomic downturn,

erodes capital bu¤ers, the system could be susceptible to contagion risk.

A priori indistinguishable shocks also have vastly di¤erent consequences in our

model. Although the system may be robust to most shocks of a given size, if it

is hit by a similarly sized shock at a particular pressure point, possibly re�ecting

a structural weakness, the ensuing �nancial instability could be signi�cant. It

cautions against assuming that the past resilience of the �nancial system to large

shocks will continue to apply to future shocks of a similar magnitude. Related

work by Albert et.al (2000) considers this issue further.

4. Liquidity Risk

We now incorporate liquidity e¤ects into our analysis. When a bank fails,

�nancial markets may have a limited capacity to absorb the illiquid external assets

which are sold. As a result, the asset price may be depressed. Following Schnabel

and Shin (2004) and Cifuentes et.al (2005), suppose that the price of the illiquid

asset, q, is given by

q = e��x; (21)

where x > 0 is the fraction of system (illiquid) assets which have been sold onto

the market (if assets are not being sold onto the market, q = 1). We calibrate � so

that the asset price falls by 10% when one-tenth of system assets have been sold.

We integrate this pricing equation into our numerical simulations. Speci�cally,

when a bank defaults, all of its external assets are sold onto the market, reducing

the asset price according to equation (21). We assume that when the asset price
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falls, the external assets of all other banks are marked-to-market to re�ect the

new asset price. From equation (5), it is clear that this will reduce banks�capital

bu¤ers and has the potential to make some banks vulnerable, possibly tipping

them into default.

The incorporation of (market) liquidity risk introduces a second potential

source of contagion into the model from the asset-side of banks�balance sheets.

Note, however, that liquidity risk only materialises upon default. Realistically,

asset prices are likely to be depressed by asset sales before any bank defaults. So

accounting only for the post-default impact probably understates the true e¤ects

of liquidity risk.

Figure 8 illustrates the e¤ects of incorporating liquidity risk into the model. As

we might expect, liquidity e¤ects magnify the extent of contagion when it breaks

out. The contagion window also widens.

As shown, liquidity e¤ects do not drastically alter the main results of our model.

But this should not be taken to mean that liquidity e¤ects are unimportant. In

part, the limited e¤ect of liquidity risk re�ects the already high spread of contagion

embedded in the benchmark scenario. But if a fraction of banks were assumed

to be totally immune to counterparty credit risk (i.e. they would survive even

if all their counterparties defaulted), then liquidity risk would probably be much

more signi�cant in amplifying the extent of contagion for intermediate levels of

connectivity. And, to the extent that liquidity risk materialises before any bank

defaults, it can be viewed as having the potential to erode capital bu¤ers and

increase the likelihood of an initial default.
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5. Relationship to the Empirical Literature

There is a large empirical literature which uses counterfactual simulations to

assess the danger of contagion in a range of national banking systems (see Upper,

2007, for a comprehensive survey). This literature has largely tended to use actual

or estimated data on interbank lending to simulate the e¤ects of the failure of an

individual bank on �nancial stability.18 The evidence of contagion risk from idio-

syncratic shocks is mixed. Fur�ne (2003) and Wells (2004) report relatively limited

scope for contagion in the U.S. and U.K. banking systems. By contrast, Upper and

Worms (2004) and Van Lelyveld and Liedorp (2006) suggest that contagion risk

may be somewhat higher in Germany and the Netherlands. Meanwhile, Mistru-

illi�s (2007) results for the Italian banking system echo the �ndings of this paper:

he �nds that while only a relatively low fraction of banks can trigger contagion,

large parts of the system are a¤ected in worst-case scenarios. Moreover, he shows

that when moving from an analysis of actual bilateral exposures (which form an

incomplete network) to a complete structure estimated using maximum entropy

techniques, the probability of contagion is reduced but its spread is widened in

worst-case scenarios.

Contagion due to aggregate shocks is examined by Elsinger et.al (2006) who

combine a matrix model of interbank lending in the Austrian banking system with

models of market and credit risk. They take draws from a distribution of risk

factors and compute the e¤ects on banks� solvency, calculating the probability

and the severity of contagion. Their �ndings also echo the results reported in our

paper. While contagious failures are relatively rare, if contagion does occur, it

18A parallel literature explores contagion risk in payment systems �see, for example, Angelini
et.al (1996).
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a¤ects a large part of the banking system.

Counterfactual simulations have also been used to assess how changes in the

structure of interbank loan markets a¤ect the risk of contagion. But these results

do not show a clear relationship. Mistrulli (2005) and Degryse and Nguyen (2007)

consider how contagion risk has evolved in Italy and Belgium as their banking

structures have shifted away from a comparatively complete graph structure to-

wards one with multiple money-centre banks. Their �ndings suggest that whilst

this shift appears to have reduced contagion risk in Belgium, the possibility of

contagion risk in Italy appears to have increased.

As noted by Upper (2007), existing empirical studies are plagued by data

problems and the extent to which reported interbank exposures re�ect true linkages

is unclear: generally, interbank exposures are only reported on a particular day

once a quarter and exclude a range of items, including intraday exposures. As such,

they underestimate the true scale of �nancial connectivity. Moreover, national

supervisory authorities do not generally receive information on the exposures of

foreign banks to domestic institutions, making it di¢ cult to model the risk of

global contagion in the increasingly international �nancial system. And studies

attempting to analyse the e¤ects of changes in network structure on contagion risk

are constrained by short time series for the relevant data series.

6. Conclusion

In this paper, we develop a model of contagion in arbitrary �nancial networks

that speaks to policymaker concerns about the transmission of shocks in an era

of rapid �nancial globalisation. Our model applies broadly to systems of agents

linked together by their �nancial claims on each other, including through inter-
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bank markets and payment systems. While greater connectivity may reduce the

probability of contagion, it could also increase its spread should problems occur.

Adverse aggregate shocks and liquidity risk also amplify the likelihood and extent

of contagion.

Our results suggest that �nancial systems may exhibit a robust-yet-fragile ten-

dency. They also highlight how a priori indistinguishable shocks can have vastly

di¤erent consequences ��nancial market participants and policymakers would be

unwise to draw too much comfort from the resilience of �nancial systems to past

shocks.

The approach provides a �rst step towards modelling contagion risk when true

linkages are unknown. Added realism to the model can be incorporated by, for

example, using real balance sheets for each bank and calibrating the joint degree

distribution to match observed data, or endogenising the formation of the network.

Extending the model in this direction could help guide the empirical modelling of

contagion risk and is left for future work.
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Appendix: Generating Functions

Let Y be a discrete random variable taking values in f0; 1; 2; :::g and let pr =

P [Y = r] for r = 0; 1; 2:::

Then the (probability) generating function of the random variable Y of the

distribution, pr (r = 0; 1; 2; :::), is

G (x) = E
�
xY
�
=

1X
r=0

xrP [Y = r] =
1X
r=0

prx
r:

Note that

G (1) =
1X
r=0

pr = 1:

Theorem 1 The distribution of Y is uniquely determined by the generating

function, G (x).

Proof Since G (x) is convergent for jxj < 1, we can di¤erentiate it term by term

in jxj < 1. Therefore

G0 (x) = p1 + 2p2x+ 3p3x
2 + :::

and so G0 (0) = p1. Repeated di¤erentiation gives

G(i) (x) =
1X
r=i

r!

(r � i)!prx
r�i

and so G(i) (0) = i!pi. Therefore, we can recover p0; p1; p2::: from the generating

function.
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Theorem 2

E [Y ] = lim
x!1

G0 (x)

and, provided that x is continuous at x = 1,

E [Y ] = G0 (1) :

Proof

G0 (x) =
1X
r=1

rprx
r�1

Therefore, for x 2 (0; 1), G0 (x) is a non-decreasing function of x, bounded above

by

E [Y ] =
1X
r=1

rpr:

Choose " > 0 and N large enough that
NX
r=1

rpr � E [Y ]� ". Then

lim
x!1

1X
r=1

rprx
r�1 � lim

x!1

NX
r=1

rprx
r�1

=

NX
r=1

rpr � E [Y ]� "

Since this is true for all " > 0,

lim
x!1

G0 (x) = E [Y ] :

Provided that x is continuous at x = 1, the second result follows immediately.
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Theorem 3

E [Y (Y � 1)] = lim
x!1

G00(x)

and, provided that x is continuous at x = 1,

E [Y (Y � 1)] = G00 (1)

Proof

G00 (x) =
1X
r=2

r (r � 1) prxr�2

and the remainder of the proof is the same as the proof of theorem 2.

Theorem 4 If Y1; Y2; :::; Yn are independent random variables with generating

functions G1 (x) ; G2 (x) ; :::; Gn (x), then the generating function of Y1+Y2+:::+Yn

is G1(x) �G2(x) � ::: �Gn (x).

Proof

E
�
xY1+Y2+:::+Yn

�
= E

�
xY1 � xY2 � ::: � xYn

�
(22)

Since Y1; Y2; :::; Yn are independent random variables, the standard result from

probability theory that functions of independent random variables are also in-

dependent implies that xY1 ; xY2 ; :::; xYn are independent. Therefore, using the

properties of expectation, we can rewrite (22) as

E
�
xY1+Y2+:::+Yn

�
= E

�
xY1
�
� E
�
xY2
�
� ::: � E

�
xYn

�
= G1(x) �G2(x) � ::: �Gn (x) .
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Figure 1: A Directed Network with Five Nodes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Transmission of Contagion implied by Equation (12) 
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Figure 3: The Benchmark Case 
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Figure 4: Benchmark and Analytical Solutions Compared 
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Figure 5: Varying the Capital Buffer 
 
 
 

 
Figure 6: Connectivity, Capital Buffers and the Expected Number of Defaults 
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Figure 7: Relaxing the Zero Recovery Rate Assumption 
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Figure 8: Liquidity Effects and Contagion 
 


