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We analyse a large Bayesian Vector Autoregression (BVAR) containing almost
one hundred New Zealand macroeconomic time series. Methods for allowing
multiple blocks of equations with block-specific Bayesian priors are described,
and forecasting results show that our model compares favourably to a range of
other time series models. Examining the impulse responses to a monetary policy
shock and to two less conventional shocks — net migration and the climate — we
highlight the usefulness of the large BVAR in analysing shock transmission.
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1 Introduction

Central banks are routinely faced with the problem of identifying the macroeco-
nomic impacts of a wide range of shocks. Typically, these impacts are estimated
using Vector Autoregressions (VARs) or Dynamic Stochastic General Equilibrium
models (DSGEs). These models usually contain up to twenty macroeconomic
variables, a very small number relative to the information set monitored by most
central banks. The rationale for only utilising a small subset of the available in-
formation in DSGE:s is that the microeconomic theory that underlies these models
is not yet rich enough to incorporate all variables (and shocks) that may be of
interest to central banks, such as business confidence, and production and prices
across all industries in the economy. On the other hand, the rationale for only
utilising a small subset of the available information in VARs is that these mod-
els lose degrees of freedom as more variables are added — the so-called ‘curse of
dimensionality’.

The literature on factor models has gone some way to resolving the curse of di-
mensionality, allowing the decomposition of very large panels of data into a small
number of common factors (Stock and Watson 1999; Forni et al 2000; Stock and
Watson 2002; Forni et al 2005). These methods have been combined with stan-
dard VAR techniques to identify the effects of monetary policy on a large number
of variables (Bernanke et al 2005; Stock and Watson 2005; Boivin and Giannoni
2008).

Recently, another approach to resolving the curse of dimensionality has been ex-
plored in the context of Bayesian regression by De Mol et al (2008). These authors
show that a Bayesian forecast based on point estimates converges to the optimal
forecast, as long as the tightness of the prior (the degree of shrinkage) increases
as the number of variables increases. Banbura et al (2007) apply this result to a
large Bayesian VAR (BVAR) with Litterman (1986) and sums of coefficients pri-
ors (Doan ef al 1984). Banbura et al (2007) find that the forecasting performance
and the impulse responses to a monetary policy shock from their large model,
which contains 108 US variables, compare favourably to those of smaller VARs.
Moreover, forecasts from the large BVAR are found to outperform forecasts from
factor-augmented VARSs estimated using the same panel of data.

It appears that both the factor model and Bayesian approaches can deliver good
forecasting performance and are capable of providing impulse responses to a wide
range of shocks, making them both useful additions to the macroeconomist’s
toolkit. However, a potential advantage of the Bayesian approach over the fac-



tor model approach is that estimation and inference can be conducted in (non-
stationary) levels; factor model applications, in contrast, typically work with data
that have been transformed to achieve stationarity, destroying the potential influ-
ence of long-run, cointegrating relationships. For this reason, this paper focuses
on a Bayesian approach for analysing the impact of shocks for New Zealand, leav-
ing the analysis of factor-augmented VARs for future work.

In addition to using New Zealand data, we extend the work of Banbura et al (2007)
along several dimensions. We augment the Banbura et al (2007) prior with the co-
persistence prior of Sims (1993), producing what Robertson and Tallman (1999)
call the modified Litterman prior. We impose restrictions on the lagged variables
entering each equation. This allows us to develop a model with multiple blocks of
equations, including those that characterise the small open economy restrictions
described by Cushman and Zha (1997). We generalise the Banbura et al (2007)
algorithm for determining the tightness of the Bayesian prior to the case where
restrictions on lags are imposed. Essentially, this allows us to impose different
degrees of shrinkage across each of the blocks of equations in the model. Finally,
we explore a wider range of shocks than Banbura et al (2007).

Generally, we find that our large BVAR provides a good description of the data in
New Zealand, producing relatively good forecasts of real GDP, tradable and non-
tradable prices, 90-day rates and the real exchange rate compared with a range of
other time series models. We examine the impulse responses of the large BVAR
to a monetary policy shock and find that the responses appear to be reasonable. To
further highlight the usefulness of the large BVAR, we also briefly look at its im-
pulse responses to two shocks not typically included in standard small open econ-
omy VARs and DSGEs, but which are important determinants of the New Zealand
business cycle: a net migration shock and a climate shock. The consequences of
a monetary policy shock are of obvious importance to most macroeconomists, but
net migration and climate shocks perhaps require more discussion here.

New Zealand is a small open economy with a working age population of around
3.25 million. Historically, changes in net migration account for a large proportion
of the cyclical fluctuations in New Zealand’s working age population. As a conse-
quence, net migration has been a key determinant of the house price cycle in New
Zealand for almost 50 years (see Coleman and Landon-Lane 2007). Likewise,
the importance of climate conditions for driving New Zealand’s business cycle
has been emphasised by Buckle et al (2007). This is because exports constitute
around 30 per cent of New Zealand’s output and a large share of this production
is related to the weather-dependent agricultural sector.



As with the monetary policy shock, the impulse responses relating to the net mi-
gration and climate shocks appear reasonable in our large BVAR. Overall, like
Banbura et al (2007), we find that the large BVAR is a useful tool for both forecast-
ing and structural analysis. Moreover, the methods for allowing multiple blocks
of equations with block-specific priors outlined here greatly improve the sophisti-
cation of structural analyses that can be conducted within this framework.

The paper is organised as follows. Section 2 outlines the BVAR framework and
the Banbura er al (2007) algorithm for determining the tightness of the Bayesian
prior. Section 3 describes how lagged restrictions can be imposed on multiple
blocks of equations in the BVAR, and how the tightness of the Bayesian prior can
be selected in a block-specific way. Section 4 describes the data and model spec-
ifications, and section 5 describes the forecasting results. The impulse responses
are discussed in section 6, and we conclude in section 7.

2 Methodology

2.1 The Bayesian VAR

LetY; = (y14,Y2,---,¥ns) be a set of time series. The VAR(p) representation of
these time series is then:

Yt:C‘f’Alyt—l"_-H"_Ale—p"_ul (1

where ¢ = (cy,...,¢,)" is an n-dimensional vector of constants, Ay, ..., A p are n x
n autoregressive matrices, and u; is an n-dimensional white noise process with
covariance matrix Eu,u) = P.

The Litterman (1986) prior, often referred to as the Minnesota prior, suggests that
all equations are centered around a random walk with drift:

Yi=c+Y 1 +u. (2

This essentially shrinks the diagonal elements of A; towards one and the other
coefficients (A, ...,A,) towards zero. Litterman’s prior also embodies the belief
that more recent lags provide more useful information than more distant ones, and
that own lags explain more of a given variable than the lags of the other variables
in the model.



The prior is imposed by setting the following moments for the prior distribution
of the coefficients:

8, j=ik=1 A2 6?
El(Ac)ij] = { Ol otherwise and - V{(Ax)ij] = 0k_20_l2 ©)
’ J
The coefficients Ay, ...,A, are assumed to be independent and normally distrib-

uted. The covariance matrix of the residuals is assumed to be diagonal, fixed
and known (i.e. ¥ =X, where ¥ = diag(cslz7 ...,02), and the prior on the inter-
cept is diffuse. Note that the random walk prior, §; = 1 for all i, reflects a belief
that all the variables are highly persistent. However, the researcher may believe
that some of the variables in the VAR are characterised by a substantial degree
of mean-reversion. This does not pose a problem for this framework, because a
white-noise prior can be set for some or all of the variables in the VAR by impos-
ing 0; = 0 where appropriate.

The hyperparameter A controls the overall tightness of the prior distribution around
0;. This hyperparameter governs the importance of prior beliefs relative to the in-
formation contained in the data: A = 0 imposes the prior exactly so that the data
do not inform the parameter estimates, and A = oo removes the influence of the
prior altogether so that the parameter estimates are equivalent to OLS estimates.
The factor 1/k? is the rate at which the prior variance decreases with the lag length
of the VAR, and 67/ GJZ accounts for the different scale and variability of the data.
The coefficient ¥ € (0,1) governs the extent to which the lags of other variables
are less important than own lags.

Under the condition that ©% = 1, Litterman’s assumption that the covariance matrix
is fixed and diagonal has been removed by Kadiyala and Karlsson (1997) and Sims
and Zha (1998) by imposing a normal prior distribution for the coefficients and an
inverse Wishart prior distribution for the covariance matrix of the residuals ‘¥, the
so-called inverse-Wishart prior.

Another modification of the Minnesota prior, motivated by the frequent practice
of specifying a VAR in first differences, is the sums of coefficients prior of Doan
et al (1984). Consider the VAR in its error correction form:

AY; =c— (In—Al _---_Ap>Yt—1 + B1AY;_ +---+Bp—lAYt—p+l +u. 4

The sums of coefficients prior shrinks (I, —A; —... —A,) towards zero. The
hyperparameter T controls the degree of shrinkage of this prior. As T — 0 the
VAR will increasingly satisfy the prior. Higher values of 7, on the other hand,



will loosen the prior until, when T = oo, the prior has no influence on VAR es-
timates. Notice that the sums of coefficients restriction implies that there are as
many stochastic trends in the VAR as there are /(1) variables. It might, however,
be reasonable to assume that there are stable, long-run cointegrating relationships
in the system. Sims (1993) introduced a prior that makes some allowance for this
possibility. This ‘co-persistence’ prior is governed by the hyperparameter 6. As
0 — 0 the VAR will increasingly satisfy the prior, so that there is one stochastic
trend in the system when 6 = 0. On the other hand, the prior has no influence on
the VAR estimates when 0 = oo. Together, the Minnesota, inverse-Wishart, sums
of coefficients, and co-persistence priors are what Robertson and Tallman (1999)
call the modified Litterman prior. !

Writing the VAR in matrix notation yields:
Y=XB+U ®)

where Y = (yl,...,yT)l,X: (Xl,...,XT)/,Xt = (Yt/—l"'”Yt/—p’ 1), U= (ul,...,uT)',
and B = (Ay,...,Ap,c)’ is the k x n matrix containing all coefficients with k =
np + 1. The form of the inverse-Wishart prior is then:

P~ iW(So,00) and B|W ~ N(By, ¥ ® Q) (6)

where the parameters By, Qg, So, and ¢ are chosen to satisfy our prior expec-
tations for B and . In this paper, we implement the modified Litterman prior
by adding dummy observations to the system (5). It can be shown that adding
T; dummy observations Y; and X is equivalent to imposing the inverse-Wishart
prior with By = (X,X,) "' XYy, @ = (X,X4) ™", So = (Ya—X4Bo)' (Y4 —X4By), and
oo =1y —k—n—1. We add the following dummy observations to match our prior
moments:

! Robertson and Tallman (1999) find that the modified Litterman prior produces relatively good
forecasts of unemployment, inflation, and GDP growth in the US compared to the Litterman
(1986) prior and the Sims and Zha (1998) prior.
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where J = (81 l1,...,00ln)/0, K =1,...,p, Ky = diag(K), and € is a very small
number.? Generally speaking, the first block of dummies impose prior beliefs on
the autoregressive coefficients, the second block of dummies impose the sums of
coefficients prior, the third block of dummies impose the co-persistence prior, and
the fourth and fifth blocks impose the priors for the covariance matrix and the in-
tercepts, respectively. Following common practice, we set the prior for the scale
parameter o; equal to the residual standard deviation from a univariate autoregres-
sive regression with p lags for variable y;. Likewise, the parameter u; (the prior
for the average level of variable y;;) is set equal to the sample average of variable

Yit-
Augmenting the system (5) with the dummy observations (7) yields:
Y*=X"B+U" (8)

where Y* = (Y',Y})', X* = (X', X)) and U* = (U',U))’. After adding the diffuse
prior ¥ o |‘P|*(”+3)/ 2 (to ensure the existence of the prior expectation of W), the
posterior has the form:

WY ~iW(E, Ty +2+T —k) and B|¥,Y ~NB,¥2 (X"X)") (9

where B = (X*'X*)71X*'Y* and £ = (Y* — X*B)(Y* — X*B) (Banbura et al 2007).
The dummy observations (7) make it clear that as A, T, and 6 tend to infinity the
Minnesota, sums of coefficients, and co-persistence dummies will tend to zero,
and the posterior parameter estimates will tend to the OLS estimates from the
original, un-augmented system (5). More generally, the posterior expectation of
the parameters coincide with the OLS estimates of the dummy-augmented system

(8).

2 Note: if v is a vector of dimension 1 x v,,, the operation diag(v) is defined here to yield a v, x v,
matrix with v on the diagonal and zeros elsewhere.

6

(7)



2.2 Penalising over-fitting by imposing tighter priors

Adding more variables to a classical regression leads to a deterioration in the para-
meter estimates — over-fitting. However, in the context of Bayesian regression, De
Mol et al (2008) show that a forecast based on point estimates converges to the op-
timal forecast for n and T going to infinity along any path, as long as the tightness
of the prior (the degree of shrinkage) increases as n becomes larger. Banbura et al
(2007) apply this result to a large BVAR with a modified Litterman prior without
co-persistence dummy observations. The tightness of the prior is increased as n
increases by using the following algorithm:

1. Select n* (where n* < n) benchmark variables for which in-sample fit will be
evaluated;

2. Evaluate the in-sample fit of a VAR estimated with OLS on the n* benchmark
variables;

3. Set the sums of coefficients hyperparameter 7 to be proportionate to the overall
tightness hyperparameter A (T = ¢; A, where ¢; > 0);

4. Choose the overall tightness hyperparameter A (and 7) to have the same in-
sample fit as the benchmark VAR.

We use a similar algorithm to penalise over-fitting in this paper. Our modified
Litterman prior, however, has one more hyperparameter that needs to set — the
tightness of the co-persistence prior 6. Following the Banbura et al (2007) rule
for choosing the sums of coefficients hyperparameter, we set the co-persistence
hyperparameter 6 to be proportionate to the overall tightness hyperparameter A
(6 = g A, where ¢» > 0). In this paper, we set ¢; = ¢ = 1.°

We define in-sample fit as a measure of relative 1-step-ahead mean squared error
(MSE) evaluated using the training sample t = 1,...,7 — 1, as in Banbura et al
(2007). The MSE for variable i for a given A is:

1 T-2
MSE} = T—p-1 Y (Yfft+1\t—yi,z+1)2 (10)
i=p

where the parameters are estimated using the training sample. The variables are
then ordered so that the n* baseline variables are ordered first. The overall tight-

3 Banbura et al (2007) find that the forecasting performance of their model is robust to different
values of ¢; € (0,1,10,100). Likewise, we find that the forecasting performance our model is
robust to different configurations of ¢; and ¢». These results are available from the authors on
request.



ness hyperparameter (A) for a given measure of baseline fit (FIT) is then found
by a grid search over A:

1 & MSE}

FIT — — 11

A (FIT) = arg m)Lin

where MSEi0 is the MSE of variable i with the prior restriction imposed exactly
(A = 0), and baseline fit is defined as the average relative MSE from an OLS-
estimated VAR containing the n* baseline variables:

1 & MSEy
*

>

FIT = 5
n* = MSE;

(12)

3 Restrictions on lags (B)

Restrictions on the lagged variables entering into each equation can be important
for correct inference in VARs in the small open economy context (Cushman and
Zha 1997 and Zha 1999). So far, we have outlined a BVAR methodology that is
symmetric; each variable is a linear function of lags of all variables in the system.
Undoubtedly, in a small open economy like New Zealand, foreign variables are
key determinants of the business cycle. Domestic variables, on the other hand, are
not likely to have much influence on foreign variables. It thus makes economic
sense to make the foreign variables exogenous to the domestic variables. Like-
wise, oil prices might be exogenous to both the domestic variables and the foreign
variables (Zha 1999). Bayesian inference with these types of exogeneity restric-
tions on lagged variables can be readily made using the block by block estimation
method laid out in Zha (1999).*

A potential problem with a block by block approach here is that the tightness of
the Bayesian prior (A, T and 6) will be the same across each block of equations; all
blocks of equations will be linked to the in-sample fit for the n* baseline variables
(section 2.2). To break this link, we define A™, t and 6™ to be block-specific
hyperparameters for each block of equations, where m =0,1,... ;M and m =0
identifies a large endogenous block of domestic variables.

For each of the M blocks of equations, we can then re-define the hyperparame-
ters in (7), select the appropriate columns from the dummy-augmented matrices

4 Our shock identification strategy leads to what Zha (1999) calls strongly recursive blocks (see
section 6). More generally, models with weakly recursive blocks can be estimated using a
methods outlined in Zha (1999) or Waggoner and Zha (2003).

8



(8), and estimate the posterior parameters from the block-specific version of (9).
Notice that this method affords much flexibility in specifying the lagged relation-
ships in each block, allowing the variables contained in any particular block to be
exogenous to any other block (or subset of blocks), where the hyperparameters
A™, t™ and 6™ can be chosen in a block-specific way. Indeed, if there is more
than one large block of equations in the system, the algorithm outlined in section
2.2 can be used to set the hyperparameters for each of the large blocks.? In this
paper, we only have one large block m = 0, the endogenous block of domestic
variables. For the remaining M blocks of equations, we use the hyperparameters
employed by Robertson and Tallman (1999) for their modified Litterman prior,
AM=1"=0"=02forallm=(1,...,M).

4 Data and model specifications

4.1 Data

The large BVAR is estimated using quarterly data ranging from the first quarter
of 1990 to the second quarter of 2007. The panel consists of 94 time series cov-
ering a broad range of categories, including business and consumer confidence,
the housing market, consumption and investment, production, and financial mar-
kets. All series in the panel are seasonally adjusted using Census X12 prior to
estimation. The series that are expressed in percentages (e.g. interest rates and
unemployment rates) and those that can take negative values (e.g. balances of
opinion and net migration) are retained in levels. We transform the remainder of
the series by applying natural logarithms and multiplying by 100. For most of the
variables in the panel we use the random walk prior §; = 1. However, some of
the variables in the panel can be characterised as being mean-reverting. For these
variables, we impose the white noise prior 6; = 0. The variables, transforms, and
priors we use are displayed in appendix A.

The main purpose of this paper is to analyse the dynamic responses of a large
number of time series to a handful of shocks. However, as an initial robustness
check of the quality of our model, we first compare its forecasting performance to
some smaller models. We adopt a small open economy monetary VAR containing

3> Simply choose n™* baseline variables from large block m (where n™* < n and n™ is the
number of endogenous variables in block m) and select the hyperparameters A™, 7 and 6™
using the algorithm in section 2.2.



real GDP, tradable and non-tradable consumer prices, 90 day interest rates, and
the real exchange rate as our baseline specification.® All other VARs we consider
nest this baseline specification. Note that the lag length p in all VARs is set to 4
unless otherwise stated.

4.2 Model specifications

BL is our baseline VAR for determining the overall tightness of our Bayesian prior
A and is estimated with OLS. To guard against possible over-parameterisation —
which will lead to poor forecasting performance — we also estimate the base-
line VAR using the Schwartz-Bayesian Information Criteria (SBC) to determine
the lag length, allowing lags to range from 1 to p. (This estimated version of the
model is called BLSBC.) In addition, we estimate this model using data-determined
Bayesian priors, BLEVAR as in Del Negro and Schorfheide (2004).” We also esti-
mate two univariate models for the forecasting exercise: an autoregressive model
AR and a random walk model RW.® The remaining BVARs are estimated using
the methods described in sections 2.2 and 3 and are displayed in table 1.

In table 1, the first column identifies the left hand side (endogenous) variables
contained in each block of equations m, and the second column identifies the
blocks in which these blocks appear as right hand side (explanatory) variables.
For example, the BL model only contains one block of equations (m = 0), and all
of these variables appear as explanatory variables within this block.

The MED model is a variant of the medium-sized model used in Haug and Smith
(2007).° The model has a domestic endogenous block (m = 0), and a foreign
block (m = 2) containing world GDP, the world CPI, and world 90-day rates. The
domestic variables do not appear as right-hand-side variables in the foreign sector,
but the foreign variables appear both in the foreign block and the domestic block.

% We exclude the volatile petrol price category from the tradable price index, and we exclude the
large fall in rents in 2001Q1 from the non-tradable price index. This fall resulted from a shift
to income-related rents for state-owned houses.

7 BLBVAR s estimated using the Bayesian priors discussed in section 2. Following Del Negro
and Schorfheide (2004), the hyperparameter A is chosen to maximise the marginal data density
using a grid search over a range of values of A. As in the case of the large BVAR, the other
hyperparameters T and 6 chosen such that 7= 6 = A.

8 The AR model uses the SBC to determine the lag length, allowing lags to range from 1 to p.

® This model differs from the Haug and Smith (2007) model in that the CPI is split into the
tradable CPI and the non-tradable CPI.
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The MEDL model is a variant of the large model used in Buckle et al (2007). This
model differs from the Buckle et al (2007) model in three main respects. First,
we express our model in levels, while Buckle et al (2007) specify their model
in terms of deviations from trend. Second, we use slightly different data in our
model. Specifically, our model splits the CPI into the tradable CPI and the non-
tradable CPI; includes the real exchange rate instead of the nominal exchange
rate; includes the Southern Oscillation Index as the climate variable instead of the
Soil Moisture Deficit; and includes exports of goods prices expressed in world
prices instead of total export prices expressed in world prices.!” Third, our model
imposes fewer restrictions on the variables entering each equation.'!

In this model, the baseline domestic block (m = 0) is augmented with GNE, real
exports, and real equity prices, and the foreign block (m = 2) is augmented with
goods export prices and import prices (both expressed in world prices), and world
equity prices. There is also a climate block (m = 1) containing the Southern Os-
cillation Index. The variables in the foreign block (m = 2) enter the foreign and
domestic blocks (m = 0,2), and the climate variable (m = 1) enters the climate
block and the domestic block (m =0, 1).

Our large model LAR contains all of the variables in the MEDL model plus an-
other 80 variables. The domestic block (m = 0) is augmented with real GDP and
GDP deflator data, housing market data, labour market data, survey (business and
consumer confidence) data, and money market data. The foreign block (m = 2) is
augmented with world 10-year interest rates, and the climate block (m = 1) is the
same as in the MEDL model. Together, the domestic, foreign, and climate blocks
interact in the same way as in the MEDL model. The LAR model, however, con-
tains oil prices (m = 3), which appear in the oil price block, the foreign block, and
the domestic block (m = 0,2, 3).

10 The Southern Oscillation Index measures the difference in standardised monthly mean air pres-
sure between Tahiti and Darwin, and is indicative of the Southern Oscillation phenomenon,
which can bring major changes to climate conditions in New Zealand. A reading below -10 on
the Southern Oscillation Index is associated with the El Nino climate pattern, while a reading
above 10 is associated with the La Nina weather pattern. Both El Nino and La Nina tend to be
associated with drought conditions in different parts of New Zealand.

1 For example, Buckle et al (2007) have four blocks of equations, and export and import prices
are determined in a foreign block containing lags of export and import prices and world GDP.
Our model, in contrast, determines all foreign variables endogenously within one block.

11
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5 Forecasting results

We compare the forecasting performance of the models up to four quarters ahead
over an out-of-sample period ranging from 2000Q1 and 2007Q1. At each point
t in the out-of-sample evaluation period all parameters — including the tightness
of the BVAR hyperparameters — are re-estimated conditional on data up to 7 — 1.
Forecasting performance is evaluated using the n* benchmark variables: real GDP,
tradable CPI, non-tradable CPI, 90-day rates, and the real exchange rate.

Table 2
Large BVAR (LAR) MSFEs relative to the other models
Univariate Multivariate

Horizon  Variable AR RW | BL BLSBC  BIBVAR  MED MEDL

1 GDP 0.83 0.83 0.29* 0.83 0.73* 0.45* 0.64
Tradable CPI 0.81 0.53* | 1.21 1.16 1.25* 0.97 1.03
Non-tradable CPI | 1.16 1.13 0.41* 0.65 0.67 0.32* 047"
90-day rates 0.75 0.68 | 0.29* 0.53* 0.74 0.32* 0.48*
Real exchange 1.04 0.85 0.58* 1.09 1.07 0.73*  0.73*

2 GDP 0.76 0.79 0.23*  0.74 0.73* 0.36* 0.52*
Tradable CPI 0.70  0.53* | 1.35 1.35* 1.29 0.98 1.00
Non-tradable CPI | 1.21 1.12 | 0.41* 0.60 0.57* 0.33* 0.42*
90-day rates 0.57*  0.54* | 0.27% 0.52* 0.78 0.16* 0.36*
Real exchange 1.17  0.50* | 0.29* 0.76 1.02 0.47*  0.51%

3 GDP 0.65* 0.77 0.15* 0.57 0.68* 0.24* 041*
Tradable CPI 0.67 0.61* | 1.08 1.64* 1.26 0.97 0.92*
Non-tradable CPI | 1.41 144 | 0.67 0.75 0.66* 0.42* 0.49*
90-day rates 0.43* 0.37° | 0.24* 045 0.54 0.13*  0.19*
Real exchange 1.20 045" | 0.23* 0.71 1.02 0.45* 0.44*

4 GDP 0.72 1.04 | 0.16* 0.49* 0.83 0.23* 0.37*
Tradable CPI 0.70  0.78 1.11 2.29* 1.38* 1.03 1.03
Non-tradable CPI | 1.92 2.14 1.13 1.26 0.88 0.58* 0.65*
90-day rates 0.46* 0.35* | 0.30" 0.51" 0.60 0.17*  0.15*
Real exchange 1.27 049 | 0.23* 0.71 1.04 0.38*  0.45*

The numbers displayed are MSFEs from LAR relative to the MSFEs from the models displayed
in columns. A ratio greater (less) than one indicates a deterioration (improvement) relative to
LAR. =« denotes a significant difference in MSFEs at the 10 per cent level, according to the
Diebold and Mariano (1995) test.

For the purposes of the forecast comparison, our benchmark model is the large
BVAR. Following Diebold and Mariano (1995), we test the null hypothesis that
model f and the large BVAR (denoted f = 0) have equal forecast accuracy on the
basis of mean squared forecast error (MSFE) comparisons. Specifically, squared
forecast errors are constructed over the evaluation period for each model, each
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variable, and each horizon:

5 2
gi]jH»h = (y£z+h —yi,r+h) (13)

where y; ;1 is the ex-post variable at horizon #, )?l].j i4+n 18 the h-step-ahead fore-
cast from model f, and 2 = 1,...,4. The difference between the squared fore-
cast errors of the competing models and the large BVAR, d; = ngz o Sl.(?t e 18
used to produce a sequence of squared forecast error differentials {dt}thl, where
T =((T, —4)—T;) and T} and T, are the first and last dates over which the the
out-of-sample forecasts are made. The mean difference in MSFEs is then tested
by regressing the sequence of squared error differentials on a constant. A statis-
tical difference in forecast accuracy between the competing models and the large
BVAR is indicated by a constant that is statistically different from zero.!?

For most forecast variables and horizons, the large BVAR performs at least as
well as the competing model specifications (table 2). The model has particularly
good performance for 90-day interest rates, outperforming most model specifica-
tions (with the exception of the AR and some of the restricted VARs, BLSBC and
BLBVAR).

The large BVAR also generally outperforms the other specifications when fore-
casting GDP and the real exchange rate. However, the results for tradable prices
are less clear-cut, with the restricted small VARs, BL35C and BLBVAR significantly
outperforming the large BVAR over a number of horizons. For non-tradable
prices, the large BVAR forecasts generally as well as the best of the competing
specifications.

Overall, the forecasting performance of the large BVAR is good relative to the
other model specifications we consider, suggesting that the model is a reasonable
description of the data in New Zealand.

6 Impulse responses

We consider impulse responses to a monetary policy shock, a net migration shock,
and a climate shock. Following Christiano et al (2005) and Bernanke et al (2005),
these shocks are identified using a recursive, shock-specific identification scheme.

12 The variance of the coefficient estimate is adjusted for heteroskedasticity and autocorrelation
using the Newey and West (1987) estimator with a truncation lag of 7 — 1. The test statistic is
compared to a Student’s ¢ distribution with 7 — 1 degrees of freedom.
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For each shock, the variables are grouped into two categories: slow-moving vari-
ables S; and fast-moving variables F;. With r; identifying the variable being
shocked, the variables are ordered as Y = (S;,r;,F;). The ordering of the vari-
ables in ¥; embodies two key identifying assumptions: the variables in F; respond
contemporaneously to the shock r; and the variables in S; do not. Our VAR can
be written as:

Yy=c+AY;1+...+A)Y,_,+Ce (14)

where Ay,...,A, impose the zero restrictions outlined in section 4.2, and C is
an n X n lower triangular Cholesky matrix of the reduced form residuals, i.e.,
Ce; = u;. The resulting impulse responses to a particular shock r; are invariant to
the ordering of the variables in S; and F; (Christiano et al 2005). For the monetary
policy and net migration shocks, the ordering of the variables changes only for
S; and ry; the domestic financial variables are always included in F,.13 For the
climate shock, on the other hand, we assume all variables are slow—moving.14
The classifications of each variable for each shock are displayed in appendix A.
For each shock, we compute confidence intervals for our impulse responses by
drawing from the estimated posterior distribution of the VAR parameters using
the block by block Monte Carlo method laid out in Zha (1999).

The impulse responses for all three shocks appear very reasonable. Almost all
variables move in the expected direction, and a clear link between migration and
the housing market, and between climate and agricultural production is evident.
Figure 1 shows the responses of GDP, tradable CPI, non-tradable CPI, 90-day
interest rates, and the real exchange rate for each of the three shocks we consider.
In addition, figures 2 and 3 show further responses to a monetary policy shock,
figure 4 shows some responses to a net migration shock, and figure 5 shows some
responses to a climate shock. For each graph, the grey shaded region represents
the 68 percent confidence interval around the impulse responses. Point estimates
for the impulse responses to all three shocks are displayed in appendix B.

6.1 Monetary policy shock

We consider a 100 basis point increase in 90-day interest rates. The responses
to this shock look very reasonable, and move in the expected direction in almost

13 Of course, if we considered shocks emanating from the foreign sector, it would make sense to
include the foreign financial variables in F;, along with the domestic financial variables.

14 The climate shock that we consider represents a drought. Because these types of weather events
are themselves slow-moving, we assume that all other variables respond with a lag.
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every case. The real exchange rate appreciates by 0.5 percent almost immediately,
before returning to its starting point after three years. The level of GDP drops by
around 0.2 percent over the year following the shock, with this effect persisting
for some time. Prices for tradable goods fall by around 0.1 percent after about
two years, reflecting the lagged effects of exchange rate appreciation. Prices of
non-tradable goods show a similarly sized reaction, but the response is much more
delayed.

An advantage of our large BVAR is that we are able to look at impulse responses
of a wide range of variables that would not be included in a typical VAR. Fig-
ures 2 and 3 show a selection of these impulse responses to the monetary policy
shock in this model. Across expenditure GDP components, investment shows the
largest response, while the consumption response is more muted. The effects of
policy tightening are evident in the labour market, with employment falling by 0.2
percent, and unemployment rising by 0.1 percentage points.

Across production GDP components, construction shows the largest response,
falling by 0.5 percent. Retail trade, wholesale trade, transportation and manufac-
turing also show reasonably large responses. Responses are much smaller across
primary and service sectors.

6.2 Net migration shock

We consider a 10,000 person shock to net migration of working age population. '’
The effects of this shock are most apparent in the housing market. House prices
rise by around 2 percent initially, although this increase is eventually reversed.
House sales also rise by around 2 percent, and construction costs increase by 0.5
percent. Residential investment increases by 2 percent, and household consump-
tion rises by just under 0.5 percent. As well as a demand channel through the
housing market, a supply channel is evident, with unemployment rising by 0.2
percentage points and skilled labour shortages easing.

15 This shock is equivalent to a 0.3 percent increase in New Zealand’s working age population.
By way of context, in New Zealand’s most recent net migration cycle, net migration’s peak
contribution to New Zealand’s annual working age population growth was 1 percent.
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6.3 Climate shock

In order to assess the effects of a climate shock, we consider a 20 point shock to
the absolute value of the Southern Oscillation Index. A reading of 20 in either
direction on this index would usually be associated with a severe drought.

Our model suggests that a climate event of this nature reduces both agricultural
and manufacturing production by around 1 percent.'® Value added in the electric-
ity sector falls by almost 0.5 percent, as production switches from hydroelectric
generation to the more resource-intensive thermal generation. The aggregate level
of GDP falls by 0.3 percent and exports fall by 1 percent.

16 The processing of meat and dairy products constitutes almost 20 percent of the manufacturing
sector in New Zealand.
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7 Summary and conclusion

This paper analysed a large BVAR for New Zealand. We extended the work of
Banbura et al (2007) by adding a co-persistence prior, and by generalising the
algorithm for determining the tightness of the Bayesian prior to the case where
restrictions on lags are imposed.

We found that our large BVAR produces relatively good forecasts of real GDP,
tradable and non-tradable prices, 90-day rates and the real exchange rate compared
with a range of other time series models, and reasonable impulse responses to a
monetary policy shock, a net migration shock, and a climate shock. Overall, we
find that the large BVAR is a useful tool for analysing shock transmission in a
data-rich environment.
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Appendices

A Data

A.1 Data key

Transform

0 level

1 log level (multiplied by 100)
Prior

1 Random Walk

0 White Noise
Speed

S Slow

F Fast

r Shock

[MPNM,C] [Monetary policy, Net Migration, Climate]
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B Impulse responses

Monetary policy Net Migration Climate
Identifier/horizon 0 4 8 20 0 4 8 20 0 4 8 20
ERCPI2 0.00 -0.02 -0.02 0.00 0.00 -0.07 -0.04 0.00 0.00 0.00 0.00 0.01
ERCPI3 0.00 0.00 -0.01 0.00 0.00 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00
EBEGBO 0.00 -0.05 0.51 0.27 0.00 -2.40 -0.68 0.70 0.00 L.19 1.42 0.07
EBEASPN 0.00 -1.07 -0.25 0.04 0.00 -2.48 -1.18 0.36 0.00 -0.35 0.13 0.11
EBEACN 0.00 -0.88 -0.31 -0.04 0.00 -2.23 -0.64 0.31 0.00 -0.17 -0.04 0.04
EBEPRFN 0.00 -0.30 0.00 0.14 0.00 -1.11 -1.45 0.10 0.00 -0.09 0.51 0.25
EBEDTAN 0.00 -0.81 0.00 0.16 0.00 -2.88 -1.70 0.37 0.00 0.59 0.95 0.24
EWMC 0.00 -0.44 -0.25 0.01 0.00 -0.49 -1.29 -0.54 0.00 -0.53 0.14 0.59
EBEFLU 0.00 1.30 0.65 0.00 0.00 1.14 2.24 0.25 0.00 1.08 0.34 -0.41
EBEFLS 0.00 1.61 0.73 -0.08 0.00 1.43 2.68 0.23 0.00 1.08 0.23 -0.56
EBECU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AFFM 0.00 0.28 0.09 -0.10 0.00 0.40 0.03 -0.94 0.00 -0.90 -1.31 -1.22
MAN 0.00 -0.29 -0.28 -0.28 0.00 0.06 -0.51 -1.18 0.00 -1.09 -1.40 -1.33
EGW 0.00 -0.21 -0.23 -0.24 0.00 0.44 0.13 -0.54 0.00 -0.30 -0.41 -0.35
CON 0.00 -0.45 -0.48 -0.69 0.00 0.30 -0.64 =277 0.00 -1.57 -2.03 -1.59
WHOL 0.00 -0.33 -0.24 0.02 0.00 -1.07 -0.82 0.34 0.00 0.45 0.84 1.13
RET 0.00 -0.27 -0.29 -0.24 0.00 -0.15 -0.44 -0.60 0.00 -0.11 -0.05 0.16
TRAN 0.00 -0.29 -0.37 -0.31 0.00 -0.39 -0.81 -0.92 0.00 -0.57 -0.58 -0.36
CcoM 0.00 -0.10 -0.10 -0.02 0.00 -0.31 -0.42 -0.44 0.00 -0.51 -0.56 -0.45
FIN 0.00 0.06 -0.01 -0.17 0.00 0.08 -0.21 -0.99 0.00 0.07 0.10 0.27
PROP 0.00 -0.01 -0.11 -0.15 0.00 -0.55 -0.99 -1.34 0.00 0.04 0.14 0.47
EDN 0.00 -0.02 -0.03 -0.04 0.00 0.06 -0.02 -0.21 0.00 0.03 0.04 0.12
GOV 0.00 -0.10 -0.18 -0.22 0.00 0.23 0.01 -0.26 0.00 -0.49 -0.63 -0.62
UNA 0.00 -0.35 -0.37 -0.25 0.00 0.20 -0.31 -0.81 0.00 -0.77 -0.82 -0.42
AFFMP 0.00 -0.47 -0.43 -0.03 0.00 -2.53 -2.58 -0.18 0.00 -0.64 -0.77 -1.00
MANP 0.00 -0.16 -0.17 0.02 0.00 -0.95 -0.92 0.12 0.00 -0.18 -0.24 -0.38
EGWP 0.00 0.04 -0.26 -0.19 0.00 -2.59 -2.95 -2.67 0.00 0.19 0.91 1.91
CONP 0.00 -0.09 -0.16 -0.18 0.00 -0.17 -0.22 -0.26 0.00 -0.06 -0.15 -0.16
WHOLP 0.00 -0.30 -0.33 -0.15 0.00 -1.29 -1.43 -0.46 0.00 -0.01 -0.01 -0.05
RETP 0.00 -0.06 -0.09 -0.03 0.00 -0.62 -0.72 -0.38 0.00 -0.04 -0.02 0.00
TRANP 0.00 -0.10 -0.15 -0.12 0.00 -0.56 -0.73 -0.42 0.00 -0.01 -0.05 -0.09
COMP 0.00 -0.04 -0.13 -0.20 0.00 -0.07 -0.32 -0.50 0.00 -0.78 -1.15 -1.30
FINP 0.00 -0.09 -0.01 0.07 0.00 0.14 0.31 0.44 0.00 0.02 0.03 0.00
PROPP 0.00 0.03 -0.02 -0.10 0.00 0.36 0.37 -0.03 0.00 0.22 0.24 0.31
EDNP 0.00 -0.06 -0.06 -0.07 0.00 -0.10 -0.12 -0.14 0.00 0.06 0.03 0.04
NGDE 0.00 -0.15 -0.19 -0.25 0.00 0.17 -0.08 -0.77 0.00 -0.24 -0.22 0.07
LHEMP 0.00 -0.13 -0.20 -0.21 0.00 -0.10 -0.30 -0.57 0.00 -0.08 -0.08 0.10
LHPR 0.00 -0.02 -0.05 -0.06 0.00 -0.10 -0.14 -0.18 0.00 -0.09 -0.12 -0.10
LLISTOX 0.00 0.02 0.01 -0.03 0.00 0.03 0.02 -0.09 0.00 -0.03 -0.05 -0.05
PQHPI 0.00 -0.13 -0.26 -0.60 0.00 1.63 1.37 -0.49 0.00 -0.63 -0.88 -0.57
AHSALEDZ 0.00 0.42 0.03 -0.11 0.00 0.32 -2.68 -5.20 0.00 -0.56 0.05 1.61
AHDAYSALZ 0.00 0.31 0.52 0.76 0.00 -0.88 0.63 2.70 0.00 0.67 0.62 -0.13
TBC 0.00 -1.75 -12.35 -8.57 0.00 -5.33 -45.22 -33.29 0.00 68.60 83.77 83.24
Y 0.00 -0.14 -0.18 -0.19 0.00 -0.14 -0.46 -0.84 0.00 -0.29 -0.33 -0.14
NCP 0.00 -0.07 -0.11 -0.16 0.00 0.33 0.18 -0.34 0.00 0.13 0.20 0.43
NCPND 0.00 -0.11 -0.15 -0.21 0.00 0.11 -0.09 -0.56 0.00 -0.05 -0.03 0.14
NCPD 0.00 -0.14 -0.25 -0.34 0.00 0.25 -0.37 -1.32 0.00 -0.26 -0.11 0.46
NCPS 0.00 -0.10 -0.12 -0.11 0.00 0.15 0.01 -0.26 0.00 0.21 0.33 0.52
NCG 0.00 0.07 0.08 0.01 0.00 0.15 0.36 0.30 0.00 -1.18 -1.52 -1.72
NIMP 0.00 -0.93 -0.79 -0.35 0.00 -0.64 -0.80 -0.07 0.00 0.31 0.67 1.19
NIMTE 0.00 -0.57 -0.91 -0.51 0.00 -2.82 -3.96 -3.21 0.00 1.11 2.75 5.22
NIMNR 0.00 -1.42 -1.90 -1.66 0.00 -4.38 -5.79 -6.13 0.00 0.30 0.76 2.04
NITIA 0.00 -0.53 -0.27 -0.21 0.00 0.08 0.64 -0.11 0.00 7.58 9.95 11.30
NIPD 0.00 -0.34 -0.26 -0.64 0.00 1.58 -0.02 -3.13 0.00 -2.02 -2.37 -1.64
NIP 0.00 -0.80 -0.74 -0.67 0.00 0.09 -0.67 -1.71 0.00 -0.44 -0.29 0.46
NIG 0.00 0.43 -0.15 -0.75 0.00 -1.03 -2.33 -5.84 0.00 0.66 1.14 2.62
X 0.00 0.03 0.06 0.13 0.00 0.02 -0.18 -0.18 0.00 -0.89 -1.24 -1.42
M 0.00 -0.25 -0.20 -0.22 0.00 0.80 0.72 0.17 0.00 -1.08 -1.17 -0.84
NVI 0.00 -7.31 -0.66 1.51 0.00 -0.19 -5.98 0.91 0.00 -1.11 2.79 273
NCPP 0.00 -0.02 -0.05 -0.06 0.00 -0.14 -0.15 -0.14 0.00 -0.10 -0.15 -0.17
NCPNDP 0.00 -0.01 -0.03 -0.02 0.00 -0.23 -0.19 0.03 0.00 -0.31 -0.43 -0.54
NCPDP 0.00 -0.10 -0.14 -0.04 0.00 -0.63 -0.87 -0.55 0.00 0.25 0.40 0.54
NCPSP 0.00 0.01 -0.04 -0.15 0.00 0.30 0.25 -0.27 0.00 -0.02 -0.08 -0.04
NCGP 0.00 -0.07 -0.08 -0.07 0.00 -0.08 -0.09 -0.06 0.00 0.02 0.03 0.06
NIMPP 0.00 -0.23 -0.19 0.04 0.00 -1.20 -1.20 -0.08 0.00 0.22 0.27 0.07
NIMTEP 0.00 -0.02 -0.12 -0.15 0.00 -1.58 -1.92 -0.93 0.00 -0.80 -0.55 -0.05
NIMNRP 0.00 -0.03 -0.11 -0.13 0.00 0.04 -0.03 -0.26 0.00 0.05 -0.05 -0.06
NITIAP 0.00 -0.04 -0.16 -0.21 0.00 -0.41 -0.78 -0.98 0.00 -0.01 -0.02 0.13
NIPDP 0.00 -0.13 -0.22 -0.28 0.00 0.38 0.24 -0.30 0.00 0.08 0.02 0.18
NIPP 0.00 -0.11 -0.14 -0.08 0.00 -0.44 -0.50 -0.16 0.00 0.09 0.08 0.08
NIGP 0.00 -0.20 -0.27 -0.09 0.00 -0.93 -0.96 -0.05 0.00 0.03 0.13 0.21
NXSP 0.00 -0.05 -0.07 -0.02 0.00 -0.15 -0.08 0.19 0.00 0.06 -0.08 -0.25
U 0.00 0.10 0.12 0.09 0.00 0.10 0.19 0.23 0.00 -0.05 -0.09 -0.20




d from previous page

Monetary policy Net Migration Climate
TDOT 0.00 -0.04 -0.08 -0.03 0.00 -0.61 -0.85 -0.65 0.00 0.16 0.26 0.37
NTDOT 0.00 0.00 -0.03 -0.08 0.00 0.22 0.22 -0.01 0.00 -0.08 -0.17 -0.19
CPIDOT 0.00 -0.02 -0.04 -0.05 0.00 -0.16 -0.20 -0.18 0.00 -0.07 -0.12 -0.13
PTGAS 0.00 -0.56 -0.46 -0.11 0.00 0.63 1.21 1.23 0.00 -2.49 -3.60 -4.68
LSTMNAA 0.00 -34.30 -25.13 8.20 0.00 -248.94 -176.94 5.66 0.00 -12.17 10.29 19.78
LNMIGPWA 0.00 -18.78 -118.72 -21.99 10000.00 238.20 -509.40 -218.68 0.00 -191.32 -69.02 118.87
IWGDPZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IWCPI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PXG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RROW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RNLROW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IEQWLDM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASOI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 5.48 2.25 0.16
PCROWO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RN 1.00 0.02 -0.03 -0.02 0.42 0.22 0.01 -0.09 0.00 0.03 -0.03 0.03
RNL 0.41 0.02 0.00 -0.01 0.16 0.10 0.02 -0.04 0.00 -0.02 -0.02 0.02
Z -0.43 -0.72 -0.34 0.43 -2.12 -4.60 -3.07 1.19 0.00 1.31 1.59 0.56
MMI1 -0.63 -0.89 -0.86 -0.75 -0.25 -0.44 -0.93 -1.18 0.00 -0.26 -0.11 0.23
MM3 1.21 1.22 1.04 0.70 3.14 320 2.36 0.86 0.00 -0.19 -0.36 -0.10
IEQNZMNZD 0.48 0.54 0.60 0.45 0.14 1.12 1.14 0.24 0.00 -0.01 -0.13 0.09
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