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Abstract
The asymptotic distribution of the Nagar bias-adjusted two-stage-least-squares
estimator is studied under the assumption of partial identification when the
number of instruments increases at the same rate as the sample size. We find that
the estimator of the identified parameters is consistent but has a non-standard
asymptotic distribution and the estimator of the unidentified parameters has a
non-degenerated distribution. The results have the same structure as those of
Phillips (1989) and Choi and Phillips (1992) for the two stage least squares

estimators for a fixed number of instruments.

1. Introduction

Recent literature on structural equations modelling has showed interest in Nagar (1959)’s
bias-adjusted two-stage-least-squares (BATSLS) estimators (e.g., among others, Donald and
Newey (2001), Hahn, Hausman and Kuersteiner (2004), Andrews, Moreira and Stock
(2007)). It is easy to compute, consistent and asymptotically equivalent to the two-stage-
least-squares (TSLS) estimator under standard asymptotics. In contrast to the TSLS estimator,
it is also consistent when the number of instruments grows at the same rate as the sample size.

Partial identification in the sense of Phillips (1989) and Choi and Phillips (1992) can,
in some cases, drastically affect the distribution of the estimator of interest in fundamental
ways. Precisely, Phillips (1989) and Choi and Phillips (1992) show that the TSLS estimator of
the identified parameters is consistent but has a non-standard asymptotic distribution while
the estimator of the unidentified parameters converges in probability to a non-degenerated
distribution. Forchini (2008) shows that, for a fixed number of instruments, the asymptotic

distribution of the limited information maximum likelihood (LIML) estimator of both the
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identified and the unidentified structural parameters does not have integer moments even if
the LIML estimator is asymptotically normal when all the structural parameters are identified.

This paper derives the asymptotic distribution of the BATSLS estimator under partial
identification when the number of instruments grows at the same rate as the sample size. We
find that

1. The BATSLS estimator of the identified parameters is consistent but has a complicated
distribution that is mean- and covariance matrix- mixed normal;

2. The estimator of the unidentified parameters converges in probability to a non-degenerate
distribution which is covariance matrix-mixed normal and depends on the identified
parameters; and

3. The asymptotic distribution of the BATSLS estimator of both the identified and the
unidentified parameters are very similar to the asymptotic distribution of the TSLS
estimator for a fixed number of instruments as derived by Phillips (1989) and Choi and
Phillips (1992).

The structure of the paper is as follows. Section 2 specifies the model and some
preliminary results. Section 3 deals with the consistency and the asymptotic distribution for

the BATSLS estimator of both the identified and the unidentified coefficients. Section 4

concludes. Proofs are in the appendix. We use the same notation as Phillips (1989) and Choi

and Phillips (1992) whereby P, ® " and © denote, respectively, weak convergence,

convergence in probability and equality in distribution.

2. The model and the assumptions

Consider a linear structural equation of the form

(1) y =X b+ X,b,+u

(r'1)  (17n) (17 ny)

with corresponding reduced form

) (3. X, X,) = (er)?)bn(kPm)’(szz)%’(VaVl,Vz) .

Notice that the over-identifying restrictions have already been imposed on the reduced form,
and that b, is regarded as being identified and b, as being unidentified.
The Nagar’s BATSLS has the form
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a
where & =k /T and P, =Z (Z 'Z ) 'Z'. Donald and Newey (2001) have suggested a similar

modification of the TSLS estimator with & = (k -n- 1)/ T . Since the term (n +1)/ T tends



to zero as T tends to infinity, Nagar’s and Donald and Newey’s estimators must be
asymptotically equivalent when 7T is large under both classical and large number of
instruments asymptotics.

In order to simplify some results later on we let M, =1, - P, and

Q.)) ﬂl»—a

"21 (yle,Xz)'(PZ-dIT)(y’Xl,XZ)

(1-a)( - ).

4)

where W =(1/k)(y,X,.X,) P, (. X,,X,) and S=(1/(T- k))(».X,.X,)' M, (y.X,.X,).

Partitioning A as
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N
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after some straightforward algebra one finds that the BATSLS estimators for the identified
and the unidentified parameters are
A A A A A -1 N A A
©) b1 :(An - A21 'A221A2]) ( 17 AZ] 'Azzl 2)

We make the following assumptions:

Assumptions

a) d=k/T® a where 0<a <l1;

b) (l/T)P 'Z'ZP ® " O where Q is a positive definite matrix of dimension (n1 ’ nl) .
¢) The matrix Z has full column rank k .

d) The rows of (v,Vl,Vz) are i.i.d. normal with mean vector zero and covariance matrix W;

e W=I,,n=n+n,.

Assumptions a, b and c¢ are fairly standard. Assumption a allows the number of instruments to
grow at the same rate as the sample size. Assumption b requires the matrix (1 /T ) P'Z'ZP to
converge as 7T increases and assumption c states that the ordinary least squares estimator of
the reduced form parameters exists for any sample size.

Assumption d requires the reduced form error to be i.i.d. normal as in Bekker (1994).

Essentially it allows us to derive asymptotic results that depend only on the mean of

(»,X,,X,) and W. Violations of this assumption would make the covariance matrices of the



asymptotic distributions presented below depend on the fourth moments of the reduced form
errors.

Assumption e is just a normalization as in Phillips (1989) and Choi and Phillips
(1992), and requires that standardizing transformations and rotations of coordinates to isolate

identified and unidentified parameters have already been performed.

Given  Assumptions d and e, (v,Vl,Vz) N (O,IT A 1n+1) so  that

® b1, )'P'Z'ZP (b,.1,) 080
(T-k1,), kw:Ww, k,é ' ' it and they are

(T-k)S:w f
0 Oﬂﬂ

n+l

independent.

3. The consistency and asymptotic distributions

As one would expect from existing results on the asymptotic properties of estimators in
partially identified model, the BATSLS estimator of the identified parameters is consistent
but that of the unidentified parameters converges in distribution to a non-standard non-

degenerate distribution. Some intermediate results allow us to prove this.

Lemma 1. If the assumptions a-e are satisfied then

ab,'0b, Db,'0 06

(7) i@’ (1-a)s ob, 0 o
é 0 0 0g
and
(8
¢ o
JTvecga- (1 ETb”I P z ZPH(b”I"') 0;_H®DN(O,a2(1-a)Sl+a(1- a)zsz)
A 0 ok
where
Sl = (](n+1)2 +Kn+l)(]n+l A In+1)
S. =1y + Ko ) Lo A1)+ -1, A{ (01,1, ,0)0(b,.1,.,0)}

{(bl,]n,O) Q(bl’ln ’0)} "Hg)

and K ,, denotes the commutation matrix (e.g. Magnus and Neudecker (1988)).



The proof of Lemma 1 can be adapted to deal with non-normality provided conditions

for the validity of a central limit theorem hold (i.e. the existence of the fourth moments of

(v,V],V2 ) ). In this case one bounds from above the variances of S and W and shows that the

bound tends to zero as the sample size grows. So, equation (7) would still hold but the

covariance matrix in (8) would depend on the fourth moments of the rows of (v,Vl,VZ) and

would have a more complex structure.
Consistency of Nagar’s BATSLS estimator of the identified parameters follows from

Lemma 1 and the continuous mapping theorem:

A A -1 A A A - A

6, =4 - A (VTA) (V74| (- A (7Y (v75.))
®" ((1-a)o) (1-a)ob)=b

For the estimator of the unidentified parameters one has
6, = (VT - (VT4 )4, ) (VT - (VT 4, ) 4,5,
=(ﬁ/122 - (Vr4,) 4,4, ')'1 (ﬁ (B, - Ayb,)- (VT 4y, ) (4, b, - bl))
= (VT ) (NTb, - (VT 4, )b, ) +0, (1)
=(NTa,) VT (b, - 4,b,)+0, (1).

)

Lemma 1 implies that both JT 4,, and JT (b2 - AZIbl) have an asymptotic non-degenerated

A

distribution so that b, converges to a non-standard non-degenerate distribution. In order to

find this distribution, one has to express (8) in a clearer form. What we need is the following

result.

Lemma 2. [f the assumptions a-e are satisfied then

ae a@ a)W 0 0 0 8

. ("1 "1) ——

é@l'Aub 0 Qa@g(; 0 a(l-a)W22 a(l-a)V\/32' 0 ::
10T APi=g b NGe -8 are) -
gvec(Azl) N ggo g 0 a (1(- <’?1))V\/32 (1(- a,)V\)/33 0 +
e geoﬂ‘? 0 0 0o a(l-a)w,i

e g (nzz' nzz) ﬂﬂ

where



W, =(1+b,'b,)ga1, +(1- a)Qf+ab,b,’
W, =(1+b,'b,) 1,

(11) W, =a (1, A1, )+(1-a)(0A1,)
W, =-(b,A1,)

W44 :(]n2 +an)(ln2 A]nz).

2

It follows from Lemma 2 that

JT—1 (b, 4,b)®" N(0,W,)

Ja(l-a)

VTl vec(4) @7 vee ()° N (0.,

Ja(l-a)

where M is an (n2 ’ n2) matrix, and they are asymptotically independent. Therefore, since

62 = (ﬁAzz )>l ﬁ(bz - AZlbl) to, (1) , we have

, -1
e u
! \/7A22®Dé;\/71422@ N (0,W,,)

a(l-a) gJa(l-a) f

so that removing the conditioning

b, |

(12) b, = V(0. (1+b,'b,) M *)du .

The estimator of the unidentified parameters has an asymptotic non-degenerate distribution

that is a normal covariance-matrix mixture with singular mixing distribution. In the totally

unidentified case these would not be there and b, =V (O,M 'z)dM with

vec(M)° N (O,(In2 +Kn)(ln A In)) . Notice that (12) has the same structure as the density

of the TSLS estimator of the unidentified parameters in Corollary 3.1(b) of Choi and Phillips
(1992) with some obvious changes since in our case the number of instruments also tends to
infinity. In contrast to the analogous results of Choi and Phillips (1992) the BATSLS
estimator of the unidentified parameters depends on the identified parameters.

We now investigate the asymptotic distribution of the estimator of the identified

parameters



JT(6,- b)) =VT (4, - 4, 41 4,) (6 - 4, 4)5,)- VTh,
=T (4, - 4, 1 4,) (B - A, b, - 4,0+ 4, 44D
=4 A (A (TR (VT (- A~ (VA ) (VTAL) VT (5
Using the continuous mapping theorem and Lemma 1
A, (VT4,) ' (VT4,) e (1-a)o.

Using Lemma 2,

JT (B - 4, )@ N(0,(1-a) W)
and is independent of everything else,
JTvee(4,)®” Ja(1-a)vec(M)° Ja(1-a)n(0,W,,)
and is also independent of everything clse. Finally,
, @eom(1-a)W, a(i-a)u, s

ab, - 21b0
Svec(4,) 5 ggo Sa(i-a)w, (1-a)w, 2

so that
T (b, - Ayb,) [NTvee(4,)®° N(avT-aW, Wy, 'vec(L).a (1- a) W)
JTvee(4,)®" (1-a)vee(L)® (1-a)"* N (0,W,)
where W,,, =W,, - aW,,"W,,W,, and L isan (n,  n,) matrix. Therefore
JT (6, - b,)I(NT4, ). (VT 4, )@
(1-a)'o'N(0,(1- a)W,)

1 TR LM N(ax/l aW, "W, 'vec(L).a (1- a) W,

g?) —Q WnQ 2
a -1 ] -1 ' -1 1 -1 ] ' -1 O
-Ng O LMW, W vec(L),HQ L'M W, (M')LO" 2
a
Removing the conditioning, we see that /T (51 - bl) has a very complicated non-standard

asymptotic distribution that is mean- and covariance matrix- mixed normal and one of the

mixing densities is singular

ZIb,)).



(13)

R 1 | L6
ﬁ(bl' b1)® N?aﬁQ VVnQ %‘

N e a -1 -1 ] -1 1 IR, 1 1Y, -16
d\]g 1 a Q L M \/V32 33 VeC(L))l a Q L M \/\/22‘3 (M ) LQ _deM
° ) 2

Notice also that if we knew that b, were not identified we could simplify (1) and (2) to
eliminate X, and consider

(14) y=Xb +u

with corresponding reduced form

(15) (»,X,)=Z(Pb,,P)+(v,I).

In this case the asymptotic distribution of the Nagar’ BATSLS estimator is
. L 5
(16) ﬁ(bl- b])® N?’HQ IVV”Q 1%,

so that the second term in (13) captures the fact the we have unidentified structural

parameters.

4. Conclusions

This paper has studied the asymptotic properties of Nagar’s BATSLS when the number of
instruments increases at the same rate as the sample size under partial identification.

We have found similar results to those of Phillips (1989) and Choi and Phillips
(1992) in the sense that the BATSLS estimator of the identified structural parameters is
consistent, but the estimator of the unidentified parameters has a non-degenerate non-standard
limit distribution which depends on the identified parameters. The asymptotic distribution of
the BATSLS estimator of the identified parameters is a mean- and covariance-matrix mixed

normal and has a very complex structure.

Appendix
Proof of Lemma 1
Since (T— k)S: /4

n+l

(T - k,Inﬂ), standard results (e.g. Muirhead (1982) p. 90) imply that

and cov(vec(S))=L(1(n+l)z +Kn+l)(l AI.)®0 as T® ¥, so that

E =1
(S) T' k n+l



& &b, 1, )'P'2'ZP (b,.1,) 000

S®" 1, . Similarly, since kW : W, Ck, +7 standard results
& 0 05
(e.g. Muirhead (1982) p. 442 and 518) yield
E(W)=1I,, +— (b I, o)gp'zzp Ab.1,.0)®" 1, +a(b 1,.0)'0(b,.1,.0)
and
cov (vec(W)) = Yo+ &1, A1)+ (b 1,.0) L lpizzp (b I 0)
AN Sk n+l n+l IERFA 8 KT H LR g
i ér 1 U U.. u
b[ ,0)'a——=P'Z'ZP 7|b,,1 ,0)yA I, |
s e i
®"0

as T® ¥ ,sothat W®" [, + (bl,lnl,O)’Q(b A, ,O) Then equation (7) follows from
i=a(1-4)(r- )
® " a (1_ a)glnﬂ +al(b"[”1’O)VQ(bl’I"I’O)_ I"HE
=(1-a)(b,.1,.0)'0(b,.1,.0).

To prove the second part of the lemma notice that since (T - k) S: W (T - k1, ) , standard

n+l
results imply that
VT - k(vec(S)- vec( nﬂ))@ N(O S )

(e.g. Muirhead (1982) p. 90) and one can prove that

c g b, )& lpzizp (bl,ln) 0929 .
\/Egvec(W)- vec(;[n+l +a ¢ &r H ! 2 ® N(O,Sz)
: ¢ %8 0 5
where
ér 1
S, :([(n+1) 1+1);1®r§ e(]m Aln+1) n+l (bl’ln 90) g_F 'Z'ZP H(bl’ln ao)g

a7 1 " y

i(b 1,.,0) §Z7P z ZPH(bl,In,O)KV)AInHE

(7 +Kn+1)8(1,,+1A1n+1 )+— 1,,+1A{(b1 1,.0)0(b,.1,.0)}

~{(b,.1,.0)0(b,.1,.0)} A 1,8

Then



fve%A aEfbl,l ~—P'Z ZPH(bl,InI) 0?8
=
A 0 0
- 61, 0“
=d (1- & )VTvec W - 5) e b"l"')S i ZZPH(b 1) 03
g 0 o
é &l oo 6 U
=i (1- &) VTvee S - aﬁb P 7P y(oo) " st
g A€ 0 05 H
¢ o ]
=d(l \/7\/")@ A ;_A? 1o dy, P Z'zP H(bvln) 0:_3- TTk\/T- kvec(S).):.’/
8 0 0 p

a(l- a)_I%\/;N(o,sz)- Ezv(o,sl)go N(0a*(1-a)s +a(l-a)'s,).

Proof of Lemma 2
Let Q =(1/T)P 'Z'ZP and write

=i (1- d)gbl,lnl)’Q(bl,lnl) 08

0 0y

- (1-d)b'0b, (h-(1-d)ob,) 50
:8 b-(1-d)ob,  4,-(1-4)0 4%
g bZ "2121 A22 :
(%)
Then consider
& -b' 00 @l 0 060
Jo= go I, 0 :Zg— b, I, 0 :
€ 0 1,580 0 I,5
gaz— 20,0, +b,'4,b, (b~ 4.b)" (b, 4,b,)0
=¢ b - A4,b 4,-(1-a)0 '+
g b AZlbl A21 A22 ;

This matrix contains b, - 4,,b,, b, - 4,b,, 4, and 4,, which appear in the statement of the

Lemma. Then using the expression above and Theorem 2 p. 30 of Magnus and Neudecker

(1988) followed by the continuous mapping theorem we obtain

10



2 b 00 & -p' 08
ﬁvec(ﬂ’)=ggo I, 0 <A gO I, 0 ;a/?vec(Z)
€ o 1,3 8% o 15
g@q -b' 06 @& -p' 0%
®°&0 I, 0 <A o 1, 0 =N(0a(-a)'s, +a*(1-a)s))

ggo o 1,5 8% o 1

°N(0,S),

S

so that T ((b1 - A4,b,)(b, - Azlbl)’,vec(AZI)',vec(Azz)) is asymptotically normal with

mean vector zero. We now have to focus on the covariance matrix. Notice that we do not need
the whole covariance matrix in the latter display. We need just some parts of it.

The covariance matrix S is

(17)

g%%bl'bl -b," 00 & 0 05 @ 0 05 g@+b1'b1 -b' 0%
(1-a)2(1(n+1)2+1<n+1)gg b, I, 0:A% Q 0:+% Q 0ZA¢ -b, I, 0=+

n n

€ o 0 1,5 & 0056 0058 o 0

ny

&

Now we need to work out the variance and covariance matrices of

NT((b - 4,b,).(b, - 4,b,) vec(4,,) vec(4,)). We do this by selecting submatrices of 4
by operation having the form FAB this will transform Tvec(4} to
JTvec(FAB)=(B'A F)\Tvec(4) so that this will have asymptotic distribution
(BAF)N(0,S)° N(0,(B'AF)S(BAF")).

Part1: b - A,b and b, - A,b,

Consider

wl - Allb 0_ @1 - Allb 0

S - Ab gy S oAb g
2 2171 @ ez 2171 G

o 1, 06,29
=vec ' ~A%0 ..
A e
& 0 g
e . % & (000

¢
®" Ngo,é(l 0 0)A
é

We will work out the covariance matrix in detail for this case, but for the cases

& & I 000 G = ¢ i

considered below we will skip the details. The asymptotic covariance matrix above is

11



8

® I 060 s+ Db, boaé)OoO

+(1—a)2§(1 0 O)Ago o 5_(1(n+1)2+1<n+1)g§ b, _AEQ 0:s
"R &0 g &0 Orz«a

Now we focus on the first term:

@4+b,'bo @b’ 090

& a I, 0060
§(1 0 O)A 0 0 I ::( (,,+1) +Kn+1)g bl —Aglnl 0 _;
n, O ggo B g 0 In BB
» Odbé%+bl'bl'q' gEbl og_O
=¢(t 0 0)Ag " E-b, IAGL .
o okg o g e 0o
« ﬂg 0 9 go I”z BT
) ®a+b 'b,o &b ' 0 00
w ] 0 60 Q 1 1+" 1
§(1 0 0)A o o K gé- b, ZA¢I, 0_—
"o o s &0 1.5

Using Theorem 9 in Chapter 3 of Magnus and Neudecker (1988) we obtain

xRep 0 0
a® I, 0 oogg b," 0 ?er 'b, 9
+ice 1, " 0 A b, -

RS HIES -

(1+bb1+a?b 0) A g‘j)b‘.’i.’
e 20

=]
(1+b,'b,)1, +§(1 0 0)A

aeb
=(1+b,'b,)1, +80 1;(- b,' 0)

_gl+Db,'b,)7, +byb," 0
_é 0 (1+b, b)

QII-O:

Similarly we can show that the second term equals

& 00
1+b,'b -
( A S0 0

Part 2: b, - 4,b,, vec(4,) and vec(4,,)

We now consider

12



%2 - AZlblc_.)
ﬁgvec(A2l) ;=\/?vec(b2 - A,b 4, 4,)
gvec(A22) -

&..

& ® 0 ooO
=Tvec((0 0 Inz)ﬁ’)®DNgo,(lnﬂA(0 0 1,12))sgln+lAgo o

Proceeding as before we find that the asymptotic covariance matrix is

é%(l-a)(Hbl'bl)Inz -a(l-a)(bl’Alnz) 0 9
$-a(i-a)(bAz,) a(l-a)(z,Az)+(1-a) QA1 0 B
é 0 0 a(i-a)(r.+x, (1, A1, )é
Part 3: b, - A,b and vec(4,)
Consider
ﬁafle; (Ij:lb')%: \/fvec((bl -4,b A4, '))
e & 000
=ﬁvecg(o 1, 0)4E0 o o
3 & 1.
e @ 006 a@ 60
®" Ngo,gé 8 ]i) ZA (0 7, o)séo o EA &, E
3 2 0 1,5 & 5
The variance covariance matrix is
gf1+b1'b1)(a(1-a)lnl+(1-a)2Q)+a(1-a)b1b1' 0 6
g 0 a(l-a)(lnzAln‘)+(1-a)2(lnzAQ)g

Part4: b - A,b and 4,

Consider

13



e 0
¢

(}bl - A4,b, : ah-Ab A6
ﬁgbz - 4, b, +=ﬁvecQ oo 2
- b, - 4,,b, A, ¢
& . e~z 211 2 J
¢ &l 0+
vecg o+ +
& édnog
® .
ca® I, O 06& 0 T
_x/?vec(;g ' g0 0 .
1”2 B =
g 80 I"z 20
[°S] 0
) 06 & (00
C & 0 0o, I, 0060 ¢ +. € S
® " NcO, A iS¢0 0 :Agl, 0+
€0 0 1,5% o 1% e T
g Rl A -
n, %ﬂ
The asymptotic covariance matrix is
1+b,'b, )1 0 O
a(l- a)aé B ), A
]n2 Al p
b, b, 'o ®d 0 ®d 0 Y
GQO - 0 - g b ’+ 0 - g b ’+ 0 ces = Q b
ce a eab g e&b g €%
+a (1' a)g b. & 0
¢ 0 LASTS 0o 1 Ag S o 1 Ag 2 0
eV o €4 g €& g

We are interested in the lower n,” " n, block which is 0.
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