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Influence of urban form on transit behaviour in the Auckland region:  

A spatial Durbin analysis  

Abstract 

Based on cross-sectional data, this paper contributes to the existing literature by offering an 

insight into the spatial structure of the public transport sector in New Zealand. By 

decomposing the total effect of one explanatory variable into direct and indirect effects，the 

use of spatial Durbin model provides a better understanding of the urban form factors that 

influence bus mode share. The results show that the total effects comprised mostly of the 

spill-over impacts, and only a relatively small portion is attributed to the direct effects on bus 

mode share that arose from own-region changes in any given variable. 

Table of Contents 
Abstract ...................................................................................................................................... 1 

1. Introduction ............................................................................................................................ 2 

2. Review of Spatial Effects and Spatial Durbin Model ............................................................ 3 

2.1 Spatial dependence and spatial heterogeneity.............................................................. 3 

2.2 Spatial Durbin model ................................................................................................... 4 

3. Data and Empirical Models ................................................................................................... 6 

3.1 Data .............................................................................................................................. 6 

3.2 Variables ...................................................................................................................... 7 

3.3 Empirical bus mode share models ............................................................................. 10 

4. Estimation Results ............................................................................................................... 11 

4.1 Spatial weights matrix ............................................................................................... 11 

4.2 Moran’s I test ............................................................................................................. 12 

4.3 The Lagrange Multiplier test ..................................................................................... 13 

4.4 Choosing between alternative spatial dependence models ........................................ 16 

4.5 Decomposing total effect into direct and indirect effects .......................................... 18 

5. Conclusion ........................................................................................................................... 23 

References ................................................................................................................................ 24 

 



2 

 

1. Introduction  
 

Throughout the world, as people’s incomes rise, many shift to faster, more comfortable and 

more individually flexible means of transportation (Downs, 2003). Not surprisingly, like most 

modern cities, the commuting pattern in Auckland is dominated by the automobile, with 

almost 86% of the share for the morning journey to work (JTW) attributed to private motor 

vehicles, while public transport (PT) accounted for around 7% of the journeys in 2007. In 

comparison to other Australasian cities, a recent ranking confirms Auckland’s weak position 

in terms of PT use, with only 46 PT trips per capita per annum, while Wellington generates 

almost twice this number at 91, and Sydney has almost threefold (ARTA, 2009 1; Statistics 

New Zealand, 2010). Auckland is thus inevitably characterised by an elevated level of car-

dependence and an extremely low PT patronage. 

 

With the aim of reducing automobile dependence and inducing non-automobile commuting, 

transport planners around the world are attempting to tackle the travel growth problem by 

implementing transport planning projects that can promote forms of sustainable urban 

development (e.g. Banister and Marshall, 2000; Barton et al., 1995).  Without exception, 

transport authorities in Auckland have also implemented several major projects to facilitate 

the development of PT, from both smaller-scale initiatives such as expanding bus priority 

lanes to large-scale development such as bus and rail infrastructure projects. Therefore, from 

the perspective of local government and urban planners, it is crucial to have a solid 

understanding of how well the design and layout of urban areas do in terms of contributing to 

a reduction in automobile use and PT travel promotion.  

 

The motivation behind this paper is that in order to properly understand the relationship 

between urban form and transit ridership, it is necessary to consider the associated spatial 

structures more specifically. Over the past few decades a number of studies have attempted to 

identify the impact of urban form on different travel behaviours such as mode choices, travel 

demand and travel patterns (e.g. Gordon et al., 1989; Headicar and Curtis, 1994; Kitamura et 

al, 1997; Næss et al., 1995). Unfortunately, all the above studies share one shortcoming in 

common. These analyses assume that observations are independent of one another in a 

geographical context. However in reality, it seems unlikely that region i’s transport network 

                                                 
1  ARTA, Auckland Regional Transport Agency, has been superseded by Auckland Transport since the 

reorganisation at local government on 1st November, 2010. However, this paper still refers to ARTA since all of 

the data used here were compiled when ARTA was in existence. 
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in terms of vehicles and public transport infrastructure is independent of that of its 

neighbouring region j. Furthermore, from the econometric point of view, ignoring spatial 

characteristics between observations could, in turn, produce biased and inconsistent 

estimators (LeSage and Pace, 2010). This general limitation from past literature gives rise to 

the need for alternative spatial estimation approaches, such as the spatial Durbin model 

(SDM), as it has the advantage of separating total effect of a particular variable on the transit 

ridership into own-region and neighbourhood effects.  

 

The remainder of the paper is organised as follows: section two provides a review of spatial 

effects and details the structure of spatial regression models. Section three describes the 

dataset, outlines the variables used, and specifies the regression models employed. Section 

four presents the empirical results and the final section provides a conclusion by summarising 

the key findings of the study. 

2. Review of Spatial Effects and Spatial Durbin Model  

2.1 Spatial dependence and spatial heterogeneity 

Recently, the economics literature has paid extensive attention to spatial issues when 

conducting theoretical and applied econometric studies using cross-sectional data of a 

geographic nature. According to Anselin (1988a), spatial data are mainly characterised by 

two features: spatial dependence (or spatial autocorrelation) and spatial heterogeneity (or 

spatial non-stationarity). 2  Together, these two particular features have been regarded as 

spatial effects and nowadays they are perceived as major challenges in spatial analysis (Du 

and Mulley, 2006).  

 

LeSage and Pace (2010) emphasise that data collected from nearby areas are commonly 

interdependent with each other, thus this spatial dependence requires special consideration 

when doing research because the consequence of ignoring this structure could result in biased 

estimates. As is well established in the literature, spatial dependence can exist in two forms, 

substantive and residual (Anselin, 1988a). The former is caused by spatial correlation of 

observed features, which indicates that the explanatory variable in one geographical space is 

correlated with the variable in adjacent or nearby geographical space. The latter, on the other 

                                                 
2 This paper will use the synonyms, spatial dependence and spatial autocorrelation, and spatial heterogeneity and 

spatial non-stationarity, interchangeably. 
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hand, relates to the fact that spatial autocorrelation can also be found among unobserved 

variables when the error terms are correlated across contiguous geographical space (Case, 

1991). As noted in Tobler’s (1979) first law of geography, “near things” are more related 

than “distant things”. As a result, spatial dependence appears to be the best known spatial 

effect and acknowledged most often in literature (Anselin, 1988a).  

 

The other spatial effect, spatial heterogeneity, as described in Can (1990), refers to the 

systematic variation in the behaviour of a given process across space, and usually leads to 

heteroscedastic error terms. It could exist in a dataset which contains spatial information 

because unless a geographical space is uniform and boundless, every location will have some 

degree of uniqueness relative to the other locations (Getis et al., 2004).  

 

Practically, it remains difficult to fully disentangle the effects of spatial non-stationarity from 

spatial dependency (Bailey and Gatrell, 1995). Moreover, Anselin (2010) further refines this 

point by introducing the “inverse problem” concept, where spatial heterogeneity becomes 

particularly challenging since it is often difficult to separate it from spatial dependence. 

Florax and Nijkamp (2003) advocate that in fact, the occurrence of spatial heterogeneity does 

not necessarily have severe implications for the information that can be obtained from a 

spatial data series. Spatial dependency, on the other hand, however, does, because an 

observation is partly predictable from its neighbouring observations. This study only focuses 

on part of the spatial dependency effect. 

 

LeSage (2004) advocates the use of spatial models when dealing with spatial effects. He 

argues that a conventional regression augmented with variables representing geographic 

dichotomous information, such as region dummies, or variables reflecting interaction with 

locational coordinates, which allow variation in the parameters over space, can hardly ever 

outperform a spatial model. 

 

2.2 Spatial Durbin model 

In practice, one should realise that spatial autocorrelation can have effects on both dependent 

and explanatory variables. Hence a “mixed” spatial Durbin model (SDM) introduced by 

Anselin (1988a) offers a more flexible alternative and might be more appropriate to apply by 
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including the “inherent spatial autocorrelation” and “induced spatial dependence” 

simultaneously (Osland, 2010).  

 

The SDM is specified as follows: 

 

   y = ρWy +Xβ + WXγ+ u     (1) 

 

The reduced form of equation (1) is: 

 

   y = (In – ρW) -1Xβ + (In – ρW) -1 WXγ + (In – ρW)-1u (2) 

 

In this case, an additional term WXγ must be included in the model to capture the k × 1 

autoregression coefficient vector γ of the spatially lagged explanatory variables WX, which 

measures the marginal impact of the explanatory variables from neighbouring observations 

on the dependent variable y (Kissling and Carl, 2008). 

 

Furthermore, Osland (2010) argues that this SDM could be developed from either a spatial 

error model (SEM) (Anselin, 2006) or from a spatial autoregressive model (SAR) (Bivand, 

1984), and this “mixed” model can be viewed as an unrestricted model of either SEM or SAR. 

In other words, the SDM further nests the SAR and the SEM by involving spatial dependence 

in the error term as well as in the dependent variable.  

 

According to LeSage and Pace (2009), SDM is the only model that will produce unbiased 

estimates regardless of the true data-generation process (i.e. whether it is a spatial lag or a 

spatial error model). This is why the SDM is often viewed as the dominant spatial model 

among others. However, public transport studies incorporating spatial effects are relatively 

scarce compared to their rich applications in other fields, such as agricultural and resource 

economics (e.g. Benirschka and Binkley, 1994; Hurley et al., 2001; Roe et al., 200; Weiss, 

1996) and housing and real estate analysis (e.g. Basu and Thibodeau, 1998; Berg, 2002; Case 

et al., 2004; Pace and Gilley, 1997; Smith and Wu, 2009).  

 

To the best of our knowledge, Greer and van Campen (2011) have produced the only 

published paper which specifically takes spatial effects into account when analysing the 

determinants of work trip bus ridership in the context of New Zealand using the SEM model. 
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It concludes that after adjusting for spatial dependency, the SEM model represents a 

significant improvement over the simple OLS model by providing more accurate estimates of 

parameter values and improves the predictive power of the model.  

 

However, there remains a potential weakness in interpreting Greer and van Campen’s results. 

In addition to the spatial lag of the dependent variable included on the right hand side of the 

regression equation, it seems plausible that neighbouring area units’ characteristics, such as 

population density and rush hour frequency, could also play a significant role in explaining 

variations in a given area unit’s bus ridership. This implies that further investigation of the 

impact of lagged explanatory variables on transit ridership is required. This study applies the 

SDM model which has the ability to capture the characteristics of neighbouring regions in 

order to account for any influence they may exert on their neighbour’s transit ridership 

patterns. 

3. Data and Empirical Models 

3.1 Data 

The major source of data for this study was the New Zealand Census, collected and complied 

by the Statistics New Zealand on the census day, 6th March, 2006. Additional data, such as 

distance to Auckland’s CBD, distance to the nearest rail or ferry terminals and census area 

unit land areas, are calculated using ArcMap. Furthermore, the rush hour frequency, which 

combines the total number of buses running through and stopping within each area unit, 

during both morning and afternoon peak hours, is compiled using ArcMap and Microsoft 

Excel. The data were geocoded at the centroid of each area unit. 

 

The census area unit is the second smallest geographical unit defined by Statistics New 

Zealand. Area units are aggregations of meshblocks, and they are non–administrative areas 

that are in between meshblocks and territorial authorities in size (Statistics New Zealand, 

n.d.). All data used in this study were compiled at this geographical level.  In line with Yu et 

al. (2010), smaller units such as the meshblocks would render too much variation, and 

consequently increase analytical instability, while larger units such as territorial authorities 

would aggregate data too much and are thus incapable of providing useful results. 3 There are 

                                                 
3 There are more than ten thousand mesh blocks and only seven territorial authorities in the Auckland region. 
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398 census area units within the Auckland region, of which sufficient data could be collected 

on 318. The final analysis is consistent with the dataset employed by Greer and van Campen 

(2011). 4 

 

3.2 Variables 

The selection of variables is mainly inspired by previous bus patronage studies. The 

dependent variable Busi is the percentage of workers in area unit i who take bus as their main 

transport to work, self-reported on the census day. It was obtained by dividing the total 

number of bus passengers by the total number of JTW commuters in the ith area unit. The 

percent mode share to bus offers an overall measure of the prominence of bus transport in the 

Auckland region. 

 

Figure 1 presents the spatial distribution of bus mode share in the Auckland region based on 

2006 census data. From this figure, it is evident that the bus mode share is not evenly 

distributed across area units. More specifically, the observations do not seem to be randomly 

distributed over space. Area units which have a high level of bus mode share, represented by 

the darker colour zones, tend to be closely concentrated in the centre, while the area units 

which have a relatively low bus ridership, shown in the lighter colour parts, are scattered 

around the boundaries.  

 

Additionally, small clusterings of high values are also detected on the northeast and southeast 

corners of the map, which further indicates the spatially heterogeneous nature of the 

distribution of bus mode share. Therefore, spatial autocorrelation is apparently observed, 

because undoubtedly the probability of a specific value of the bus mode share variable in one 

specific location (area unit) depends on its value in neighbouring locations.  

 

                                                 
4 Note that in Greer and van Campen (2011), the total number of observation is 318 area units. However, 

Waiheke Island is dropped from the dataset because although there are some bus services running within this 

area, they are not connected with any other bus services due to its isolated nature. 
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Fig. 1. Spatial distribution of bus mode share in the Auckland region 
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Potential bus mode share predictors are divided into three categories: urban form (UF), transit 

service (TS), and demographic and socioeconomic characteristics (DS). The final dataset 

includes eight independent variables, where: 

 

1. UF variables: 

 
PopDi:  gross population density in the ith area unit in the Auckland region, measured 

by the total number of inhabitants per square kilometre;
 

 EmpCi: employment density, measured by the total number of full-time and part-time 

employees per capita in the ith area unit in the Auckland region; 

 
Dwellingi: total number of private owner occupied dwellings in the ith area unit in the 

Auckland region; to be used as an indicator of land use patterns;
 

 CBDi: distance to CBD from the centroid of the ith area unit in the Auckland region, in 

kilometres; 

 

2. TS variables: 

 Stationi: distance to the nearest PT terminal/stop other than bus (either train or ferry) 

from the centroid of the ith area unit in the Auckland region, measured in kilometres; 

 Freqi: frequency of bus service within the ith area unit in the Auckland region; 

 

3. DS variables: 

 Incomei: median household income measured in thousands of New Zealand Dollars 

(NZD) within the ith area unit in the Auckland region; 

 Cari: mean number of motor vehicles per household within the ith area unit in the 

Auckland region; 

 

The Transportation Research Board (1996) points out that urban form variables, such as road 

network type and neighbourhood type, along with variables such as in-vehicle time and an 

indicator of the waiting environment which describe the quality of transit service indicated by 

Paulley et al. (2006), also influence the demand for PT; unfortunately, these data are not 

available. A summary of key descriptive statistics of the variables used in this analysis are 

presented in Table 1. As can be seen from this table, the bus share for JTW trips in the 

Auckland region is fairly low; the average figure for all 317 area units is only 5.65%, ranging 

from a low of 0.13% to a high of 17.43%. 
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Table 1. Area unit level descriptive statistics of variables for Auckland Region 

 

Variables Mean Std. Dev. Minimum Maximum 

Dependent variable 

   
  

Bus (%) 5.65 3.44 0.13 17.43 

UF explanatory variables 
   

  

PopD (per km2) 833.98 405.64 1.47 1726.74 

EmpC (per capita) 0.48 0.08 0.27 0.66 

Dwelling 1241.25 503.51 114 3270 

CBD (km2) 16.68 8.36 2.23 43.29 

TS explanatory variables 
   

  

Station (km2) 3.67 4.17 0.14 35.53 

Freq 130.03 94.48 2 476 

SD explanatory variables 
   

  

Income (in thousands of NZD) 27.11 6.32 14.4 48.4 

Car 1.71 0.2 1.18 2.32 

 

 

3.3 Empirical bus mode share models  

A logarithmic transformation is applied to both dependent and explanatory variables with the 

intention of capturing the a priori belief that ceteris paribus, the impact of each explanatory 

variable on bus mode share is diminishing (Bresson et al., 2004; Gomez-Ibanez, 1996).  

 

Therefore, firstly, the non-spatial bus mode share model in log-log form is specified as below: 

 

    lnBus = XβOLS + εOLS     (3) 

 

The above equation posits that the variation in the natural logarithm of the bus mode share 

(lnBus) in area unit i is explained by the variables in matrix X, which includes a constant term, 

the natural logarithm of UF variables (PopD, EmpC, Dwelling and CBD), the natural 

logarithm of TS variables (Station and Freq), and the natural logarithm of DS variables 

(Income and Car). Since the linear regression (8) is estimated by ordinary least squares, it is 
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labelled as the OLS model and hence the estimated results serve as a benchmark against the 

following spatial model estimations. 5 

 

Secondly, the following SAR model is: 

 

    lnBus = ρWlnBus + XβSAR + uSAR   (4) 

 

Similarly, the SEM is: 

    lnBus = XβSEM + ε     (5) 

 

    where ε = θWε + uSEM 

 

Lastly, the SDM is given as: 

 

    lnBus = ρWlnBus + Xβ + WXγ + uSDM  (6) 

 

4. Estimation Results 

4.1 Spatial weights matrix  

In empirical spatial econometric models, the selection of a spatial weights matrix, normally 

denoted as W, plays an important role. LeSage (2002) outlines the many possible ways to 

quantify the structure of spatial dependence between observations. Typical approaches 

include: distance decay (Anselin, 1980), structure of a social network (Doreian, 1980), 

economic distance (Case et al., 1993) and k nearest neighbours (Pinkse and Slade, 1998). 

However, as Leenders (2002) illustrates, one major challenge facing spatial econometric 

models is that the spatial weights matrix W cannot be directly estimated but needs to be 

explicitly specified a prior, and current economic theory provides no formal guidance for this. 

Although a wide range of literature, echoed by Anselin (2002), has proposed several 

approaches to create the spatial weights matrix, there barely exists a formal guidance on how 

to select the “optimal” spatial weights as existing specifications all seem somewhat arbitrary.  

 

                                                 
5 All of the models (i.e. OLS, SAR and SDM) are estimated using Stata 11. 
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Practically, in spite of their lesser theoretical appeal, geographically derived weights are 

among the most widely applied specification in spatial econometric analysis (Anselin, 2003a). 

In addition, as Manski (1993) argues, this popularity of geographically derived weights is due 

to the fact that the structure of W is constrained so that the weights are truly exogenous to the 

model, thus avoiding identification problems.  

 

Generally there are two types of geographically derived weights based on proximities, 

namely, a binary measure of continuity (when two areas share common borders) and a 

continuous measure of distance. Following a majority of empirical studies (Fingleton, 1999, 

2000; Le Gallo, 2002; Le Gallo et al., 2003; Rey and Boarnet, 2004), this paper uses  a two-

dimensional Cartesian coordinate system with the ordered pair (x, y) coordinates to create a 

spatial weights matrix W based on the distance decay specification along with its eigenvalues 

matrix E. 

 

By convention, the weights matrix W has been row-standardised such that every row of the 

matrix sums to one (i.e. ∑ 𝑤𝑖𝑗 = 1𝑗 ). Each element of W is therefore defined as: 

 

     𝑤𝑖𝑗 =  0 if i = j 

     𝑤𝑖𝑗 =  
1

𝑑𝑖𝑗
 if dij ≤ d* and; 

     𝑤𝑖𝑗 =  0 if dij > d* if observation i ≠ j 

 

where dij is the spherical distance between the centroids of area units i and j, and d* is the 

critical cut-off distance. This inverse Euclidean distance, dij, contains a maximum threshold 

band of 24.14 kilometres to guarantee connections between all area units, that is, each spatial 

unit must have at least one neighbour. 6 This indicates that two area units are considered 

neighbours when the distance between their centroids is less than 24.14 kilometres, and not 

neighbours if their centroids lie 24.14 or more kilometres apart.  

 

4.2 Moran’s I test 

A univariate Moran’s I test for residuals is the most commonly employed first-step 

specification test for spatial autocorrelation (Moran, 1948; Anselin, 1999). The test does not 

                                                 
6 The default unit for cut-off length is in miles in Stata 11, by conversion, 15 miles are approximately equal to 

24.14 kilometres. 
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specify an explicit alternative spatial model (i.e. either SAR or SEM models) but has power 

against both (Anselin and Rey, 1991).  

 

The Moran’s I test for residuals in matrix notation is captured by: 

 

I = (N / S0)(e’We / e’e)   

 

where e denotes a vector of OLS residuals, and 𝐒𝟎 = ∑ ∑ 𝑤𝑖𝑗jj , a standardisation factor that 

corresponds to the sum of the weights for the non-zero cross products. 

 

According to Florax and Nijkamp (2003), the interpretation of Moran’s I should be parallel to 

a correlation coefficient; however the major distinction is that its value is not bounded by the 

(-1,+1) interval. A positive value signals positive spatial autocorrelation, measuring the 

occurrence of similar levels of a variable being found over contiguous or nearby spaces. By 

contrast, a negative value signals negative spatial autocorrelation, measuring the joint 

occurrence of high and low attribute values in adjoining locations.  

 

The Moran’s I statistic shows a positive value of 18.733 with a p-value that is lower than 

0.0001. As expected, this result indicates that the null hypothesis of no spatial dependence 

should be rejected. Furthermore, the test statistic indicates that positive spatial autocorrelation 

exists, and in order to obtain unbiased and consistent estimators, spatial models should be 

adapted instead of the non-spatial OLS estimations.  

 

4.3 The Lagrange Multiplier test 

By applying the Lagrange Multiplier (LM) test, we select between a spatial lag and a spatial 

error alternative (Anselin, 2003a). Basically there are two major forms of the LM test. The 

𝐿𝑀𝑙𝑎𝑔  statistic tests the null hypothesis of no spatial autocorrelation in the dependent 

variable; the 𝐿𝑀𝑒𝑟𝑟𝑜𝑟 statistic, on the other hand, tests the null hypothesis of no significant 

spatial autocorrelation in the error terms.  

 

The LM test against a spatial lag alternative (𝐿𝑀𝑙𝑎𝑔) is demonstrated in Anselin (1988b) and 

takes the following form: 
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    𝐿𝑀𝑙𝑎𝑔 = [e’Wy / (e’e/N)] 2/ D 

 

where D = [(WX β)’(In – X(X’X)-(WX β)/σ2)] + tr(W2 + W’W). 7  

 

By contrast, the LM test against a spatial error alternative (𝐿𝑀𝑒𝑟𝑟𝑜𝑟), which is originally 

outlined in Burridge (1980), takes the form of: 

 

    𝐿𝑀𝑒𝑟𝑟𝑜𝑟 = [e’We / (e’e/N)] 2/ [tr(W2 + W’W)] 

 

Apart from a scaling factor, this statistic corresponds to the square of Moran’s I. 

 

As recommended by Florax and Nijkamp (2003), if both hypotheses can be rejected, one 

should consider constructing the robust forms of these LM tests which have the ability to 

correct for the presence of local misspecification of the other form (Anselin et al., 1996; Bera 

and Yoon, 1993). The test procedures of 𝐿𝑀𝑙𝑎𝑔
𝑟  and  𝐿𝑀𝑒𝑟𝑟𝑜𝑟

𝑟   are identical to the one 

described above8. Both the classic and the robust LM tests are based on the residuals of the 

OLS model and are asymptotically distributed as 𝜒2(1). 

 

Table 2 presents the diagnostics for spatial dependence. Under the classic LM test, both 

hypotheses of no spatially lagged dependent variable and of no spatially autocorrelated 

disturbances can be rejected at a 1% significance level. The robust LM tests consistently 

show the same results, with rejection of both hypotheses at a 1% significance level. This 

implies that OLS is rejected in favour of both SAR and SEM models. In addition, the statistic 

of 𝐿𝑀𝑙𝑎𝑔
𝑟 , 34.968, is greater compared to the result in 𝐿𝑀𝑒𝑟𝑟𝑜𝑟

𝑟  , indicating a slight edge in 

favour of the spatial lag model. 

 

Unlike what holds for the SAR’s counterpart, the Autoregressive (AR) model in time-series 

analysis, the OLS estimation in the presence of spatial dependence will be inconsistent, 

simply because of the endogeneity issue discussed before. Therefore, in this study, the SAR 

and SEM models will be estimated using ML estimation (Ord, 1975; Anselin, 1988a).  

 

                                                 
7 Where “tr” denotes the trace of the matrix W. 

 
8 The subscript “r” denotes “robust”.  
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Table 2. OLS diagnostics for spatial dependence 

  

Measure  Statistic Significance 

SEM     

LMerror 123.601 *** 

𝐿𝑀𝑒𝑟𝑟𝑜𝑟
𝑟    30.395 *** 

SAR     

LMlag 128.174 *** 

𝐿𝑀𝑙𝑎𝑔
𝑟   34.968 *** 

 

 

The results from the non-spatial OLS and the SAR model are reported in Table 3. Several 

distinctive points have been found. Firstly, consider the OLS result. 9 Overall, the coefficients 

of the urban form variables are significant and of the expected signs, in line with earlier 

findings in the literature. However, against expectations, the variable logDwelling is not 

significant. 

 

The value of R-squared (R2) is 0.730, indicating a reasonable model fit. 10 However, as the 

result from the Moran’s I statistic and model diagnostic tests in Table 2 show, estimates using 

the OLS method suffer from a major problem: there is evidence of a positive spatial 

autocorrelation, and the LM test statistic suggests the lag specification as the appropriate 

alternative. Thus, the above OLS estimates should be interpreted with caution.  

 

Firstly, in line with the conclusion from Moran’s I statistic, the spatial autocorrelation 

coefficient estimate ρ for the SAR model is 0.762, and it is statistically significant at a 1% 

level, confirming the presence of positive spatial autocorrelation in the regression relationship. 

The OLS result simply ignores this spatial variation and produces biased estimates. 

 

                                                 
9 The OLS result in Table 3 is not adjusted by heteroscedastic-robust standard errors so that they are compatible 

with the following spatial models. 

 
10 Adjusted R-squared for OLS estimation is 0.725. 
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Secondly, upward bias is found in most of the least-squares estimates, suggesting over-

estimation of the sensitivity of bus mode share to the urban form, transit supply, and socio-

economic and demographic characteristics when spatial dependence is disregarded. For 

instance, the OLS estimates imply that a one percentage increase in the population density in 

the area unit i, will increase the bus mode share in the same area unit by approximately 

0.14%. However, after adjusting for spatial dependence, the estimated result from the SAR 

model suggests a much smaller effect of population density on the bus mode share, where a 1% 

rise in the population density in the area unit i will only increase the bus mode share in the 

same area unit by approximately 0.11%. 

 

Thirdly, by taking the spatial lag into account, the fit of the model has improved dramatically. 

The R2 statistic for the SAR model is 0.785, which has a higher value compared to the one in 

OLS. Therefore, after adjusting for spatial dependence, the overall fitness of the model has 

been improved. 

 

Compared to the OLS, the signs and significance levels are maintained for all except the 

estimated coefficient on log(EmpC). Using the SAR model, the level of significance of this 

variable was reduced from 1% to 5%, and the impact of this variable on bus mode share also 

diminished by around one percent. 

 

4.4 Choosing between alternative spatial dependence models  

As Elhorst (2010) describes, if the OLS model is rejected in favour of both SAR and SEM 

models, then the SDM should be estimated. Therefore, a likelihood ratio (LR) test, also 

known as the score test, can subsequently be used to test two separate hypotheses that H0: γ = 

0 and H0: ρβ + γ = 0. 

 

Recall that the SDM model is reduced to the SAR model if γ = 0. Osland (2010) proposes 

that when there is evidence of maintaining the SAR or SEM model, the SDM model specified 

by equation (5) and the following log likelihood tests may be useful in terms of determining 

the “true” spatial process. Thus, for the SAR model, one can determine the dominant model 

by testing the null hypothesis γ = 0. Rejecting the null hypothesis implies rejecting the SAR. 

Similarly, a common factor constraint: γ = - ρβ should be tested in order to determine the best 

model between the SDM and its SEM. Likewise, if the null is rejected, this indicates 
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statistical evidence in favour of the SDM. With the aid of the LR test, one can decide the 

better model between the SDM and its restricted versions.  

 

The likelihood ratio (λ) is defined as: 

 

    λ = 2[ln (LU) – ln (LR)] ~ 𝜒2(m) 

 

where LU is the likelihood function of the unrestricted model (i.e. LU = LSDM) whereas LR is 

the likelihood function of the restricted model (i.e. LR = LSAR or LSEM), and m is the number of 

restrictions imposed. The idea is that if the restrictions are valid, the log likelihood functions 

should appear to be similar in values and accordingly λ should be equal to zero.  

 

The following results are obtained: LSDM  = -59.929, LSAR  = -86.097 and LSEM = -75.867. 

 

With 8 degrees of freedom, the critical values at 1%, 5% and 10% significance are 1.646, 

2.733 and 3.490, respectively. The test statistics exceed the critical values for all cases, 

therefore we can reject the null hypothesis that the underlying spatial process is SAR or SEM 

at a 1% significance level; in other words, the restriction on parameter γ associated WX and 

also the common factor constraint are invalid. As a result, the unrestricted SDM should be 

employed to represent the data-generation process of the spatial autocorrelation. This result 

further implies that the spatial lags of both the dependent and explanatory variables should be 

included in the model. In fact, the inclusion of the spatial lags of explanatory variables makes 

reasonable sense as area units situated near each other should have similar values in terms of 

urban form, transit supply and socioeconomic/demographic variables, because economic 

activities tend to interact largely across space.  

 

The estimation results for the SDM model are summarised in Table 3 below, alongside with 

the OLS and SAR estimates. Overall, the SDM explains over 85% of the variation in the bus 

mode share.  

 

 

Table 3 Non-spatial OLS, spatial autoregressive model and spatial Durbin model 

(Dependent variable: lnBus) 
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Explanatory Variable OLS Estimates 
 

SAR Estimates        SDM Estimates 

Intercept 2.749 *** 2.334 *** 3.522   

log(PopD) 0.138 *** 0.114 *** 0.141 *** 

log(EmpC) 1.646 *** 0.798 ** -0.285   

log(Dwelling) -0.218   -0.132   -0.166 * 

log(CBD) -0.970 *** -0.440 *** -0.511 *** 

log(Station) 0.260 *** 0.202 *** 0.120 *** 

log(Freq) 0.158 *** 0.118 *** 0.143 *** 

log(Income) -1.053 *** -0.610 *** -0.579 *** 

log(Car) -0.865 *** -1.413 *** -0.732 *** 

Lag log(PopD) 
 

  
 

  -0.379 ** 

Lag log(EmpC) 
   

  3.528   

Lag log(Dwelling) 
   

  -0.066   

Lag log(CBD) 
   

  0.480  ** 

Lag log(Station) 
   

  0.098   

Lag log(Freq) 
   

  0.281 * 

Lag log(Income) 
 

  
 

  0.410   

Lag log(Car) 
   

  -3.613 *** 

ρ 
 

  0.762 *** 0.823 *** 

Squared Correlation 0.730   0.785   0.852   

Variance Ratio 
 

  0.833   0.779   

Log likelihood 
 

  -86.097   -59.929   
 

 *** Estimated coefficients significant at 1% level; ** significant at 5%; * significant at 10% 

 

4.5 Decomposing total effect into direct and indirect effects 

Interpretation of the SDM model differs from that of its non-spatial regression counterpart, 

the ordinary least squares, as the kth parameter vector β is no longer a partial derivative of y 

with respect to change in the kth independent variable from the n × k matrix of X (LeSage and 

Fischer, 2008).  Essentially, the spatial dependence components in the SDM expand the 
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information set to include information from neighbouring area units. To see the impact of this, 

consider the partial derivative of the SDM in equation (7) with respect to a particular 

explanatory variable xk: 

 

   M  =  
𝜕𝑦

𝜕𝑥𝑘
  = (𝐈 − 𝜌𝐖)−1[𝛃𝑘 + 𝐖𝛾𝑘]   (12) 

 

                                            n × n         n × n           n × n           

 

The partial derivative results in an n × n matrix M representing marginal effects, which is 

shown in equation (12). The impact on the dependent variable from a change in a coefficient 

can be decomposed into three ways, namely, direct, indirect and total effects. LeSage and 

Pace (2009) define the direct effect as the average of the diagonal elements of matrix M; it 

provides a summary measure that represents an average of the impacts on bus mode share 

arising from own-region changes in variable xk. The indirect effect is defined as the average 

of the off-diagonal elements of matrix M; this effect is also known as the spatial spill-over 

effect as it measures the impact on bus mode share in area unit i arising from changes in 

variable xk from all other area units. The total effect is calculated as the average row sums of 

matrix M; it includes both direct plus indirect effect. The total effect measures the average 

cumulative impact on each observation from changing the kth explanatory variable by one unit 

across all observations.  

 

Average direct, indirect and total effects estimated are reported in Table 4, along with 

inferential statistics (i.e. the figures in parenthesis are bootstrapped standard errors) 

calculated using a bootstrap method with 1,000 draws. Because all of the variables are 

expressed in natural logs, the coefficient estimates can be interpreted as elasticities. 

 

 

 

Table 4. Direct, indirect and total effects of the spatial Durbin model 

 

Variables Direct Effect     Indirect Effect     Total Effect 

log(PopD) 0.136 *** -1.480 *** -1.345 *** 

  (4.73E-05) 
 

(4.72E-05) 
 

(5.81E-08) 
 log(EmpC) -0.230 *** 18.543 *** 18.322 *** 
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  (5.30E-04) 
 

(5.77E-04) 
 

(1.05E-07) 
 log(Dwelling) -0.170 *** -1.141 *** -1.311 *** 

  (3.53E-05)   (3.54E-05)   (3.49E-08) 
 log(CBD) -0.510 *** 0.335 *** -0.175 *** 

  (1.04E-05)   (1.03E-05) 
 

    (1.34E-08) 
 log(Station) 0.124 *** 1.108 *** 1.232 *** 

  (3.43E-05)   (3.26E-05)   (5.10E-08)   
log(Freq) 0.151 *** 2.245 *** 2.395 *** 
  (7.03E-05)   (7.05E-05) 

 
(1.16E-07) 

 log(Income) -0.580 *** -0.374 *** -0.955 *** 
  (1.13E-05)   (1.15E-05) 

 
(7.01E-09) 

 log(Car) -0.816 *** -23.732 *** -24.548 *** 

  (7.51E-04)   (6.93E-04) 
 

(8.37E-07)   

 

*** Estimated coefficients significant at 1% level 

 

For the total effects, all estimated parameter values have the expected signs, with one 

exception for log(PopD). The total effects of log(EmpC), log(Station) and log(Freq) on 

transit ridership are all positive and significant; while the total effects of log(Dwelling), 

log(CBD), log(Income) and log(Car) and log(PopD) are negative and significant. Separating 

the total effect of a regressor into direct and indirect effects yields further insights. 

 

Firstly, the positive sign on log(EmpC) suggests that as employment density from all sampled 

areas rises, the transit ridership will tend to fall. This outcome is comparable with the results 

in Paulley et al. (2006), where the density variables in this aforementioned work also respond 

positively to public transport demand. Secondly, for the two transit service variables, first of 

all, the total effect, which comprise the direct and indirect effects of log(Station), is positive 

and significant, implying that across the Auckland region, as the distance to train station 

and/or ferry terminal increases, commuters will prefer to choose buses as their transport mode. 

Next, both the direct and indirect effects of rush hour frequency show a significant positive 

effect on the bus mode share in a given area. This result provides insights to transport 

planning viz. that by increasing the number of buses during morning and peak hours, the 

effect will not only be reflected through a rise in the percentage of commuters who choose to 

take bus to work in its own district, but also an additional spill-over benefit which can be 

reflected in its nearby areas. The elasticity of total effect of this variable is about 2.4, which 

indicates that increasing the transit frequency in area unit i by one percent, the average bus 

mode share across all area units will rise by 2.4%, holding other variables constant. 
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Secondly, for the group of variables that respond negatively to bus mode shares, the 

parameter estimate on log(Dwelling) indicates that the larger the share of private owner 

occupied dwellings within an area unit, the lower the share of commuters who take bus, 

which seems intuitively plausible. The estimated coefficient on the total effect of the distance 

to the CBD is negative and significant, suggesting that the propensity to take bus decreases as 

the area unit is farther away from the CBD in the Auckland region. For the two demographic 

and socioeconomic variables, both the direct and indirect effects of income level exert a 

significant negative impact on the bus mode share, reflecting the idea that bus transport is an 

inferior good: as the commuters become wealthier, they will make fewer bus patronages for 

their JTW trips. Moreover, the direct effect of log(Car) show that there is an inverse 

relationship between the number of cars owned per households and the bus usage rate, which 

is in line with the findings on car ownership variable found in Zhao et al. (2006) and Vance 

and Hedel (2007). The indirect effect of cars exhibits the same tendency, suggesting that with 

a one percent rise in the number of cars owned in adjacent area unit j, the average bus mode 

share in any given area unit i tends to decline by approximately 23.7%. Therefore it is clear 

that the more private vehicles owned in a geographical confined region and around its 

neighbourhood, the less likely the commuters will chose to take bus to work, because they 

have a more convenient substitute.  

 

Thirdly, the estimated coefficient on the total effect of log(PopD) is negative and significant 

at the 1% level. This implies that the population density from all observed area units affects 

negatively the percentage of workers who take bus as their main transport to work, which 

runs counter to our original hypothesis that high population density leads to high transit 

ridership. 

 

As discussed earlier, total effect can be unravelled into direct (own-region) and indirect 

(spatial spill-over) effect. Some notable findings were revealed by our results: three urban 

form variables: log(PopD), log(EmpC) and log(CBD) have the opposite signs for direct and 

indirect effect parameters; while the rest stays consistent. The estimated coefficient on the 

direct effect of log(PopD) is positive and significant at the 1% level. The result is consistent 

with the assumptions made by previous studies without consideration of spatial effects (Maat 

et al., 2005; Steiner, 1994), where people living in high-density sectors prefer to use more 

public transport or walk more frequently, but will make fewer and shorter trips by private 
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vehicles. However, the indirect effect is negative and also significant, suggesting that once 

the population density in nearby regions increases, the bus mode share in area unit i will 

decline. This outcome may be due to the fact that commuters in area unit i interpret the rise in 

population density in their neighbouring regions as a sign of potential congestion issues 

and/or dissatisfaction of the transit service, since buses might not be running on time, in such 

cases, taking private vehicles will be a better alternative than using public transport. Because 

the indirect effect is larger in magnitude, the total effect of log(PopD) is negative.  

 

For the next urban form variable log(EmpC), the own-region effect of employment density 

exerts negative impact on the transit ridership, while the spatial spill-over effect is positive 

and significant, suggesting that if there are more employment opportunities in nearby regions, 

the bus mode share in region i will tend to rise. The negative parameter estimation of the 

direct effect of employment density reflects the greater attractiveness of low density suburban 

employment for the transit-dependent workers in the Auckland region. The positive indirect 

impact indicates that due to the spill-over effect commuters may find riding buses is a better 

option for longer trips, especially when workplace is far from the commuters’ residential 

address. The sign of the total effect for this variable is negative because the magnitude of the 

negative direct effect outweighs the positive indirect effect. 

 

Although the total effect of log(CBD) is negative, the direct and indirect effects have opposite 

signs. The direct effect of log(CBD) is negative and significant at the 1% level, suggesting 

that commuters are less willing to take the bus to work if they live farther away from 

Auckland city centre. Surprisingly, the estimated coefficient on the indirect effect of the 

distance to the CBD is positive, suggesting that the neighbourhood effect on the propensity to 

take the bus increases as the area unit is farther away from the CBD in the Auckland region. 

Although several possibilities were examined, there was no solution where this effect came 

out undesirable sign, therefore requires further investigation.  

 

Another significant finding from the SDM output is that except for log(CBD) and 

log(Income), the total effects comprised mostly of the spatial spill-over impacts, and only a 

relatively small portion is attributed to the direct effects on bus mode share that arose from 

own-region changes in variable xk. For instance, the indirect effect of log(Car) constitutes 

nearly 97% of the total impact of number of cars on bus mode share. Therefore, for the case 

of spatial dependence considered in the SDM model, least-squares regressions that ignore this 
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spatial spill-over effect and only produce the coefficients that representing the summary 

impact measures, result in biased and inconsistent estimates. The result also reveals that 

spatial spill-overs dominate in transit behaviour analysis and greater attention should be paid 

from transport and urban planners on neighbourhood effect. 

 

5. Conclusion 

This paper estimated how urban form variables are related to bus mode share and how these 

effects vary across the Auckland region’s diverse and dissimilar landscapes. Overall, based 

on area unit data, the analysis highlighted the complexity and importance of the spatial 

structure in determining the factors that influence the bus mode share. 

 

The OLS method used in many transport-related studies assumes that the 

observations/regions are independent of one another in a geographical context. Thus, OLS 

looks for similarities in different spatial areas and effectively concentrates than in an ‘average’ 

figure to cover the whole space. However, this is not plausible when using spatially-defined 

data because it is likely to exhibit positive spatial autocorrelation, that is, correlation of a 

variable with itself through space. Ignoring the spatial characteristics between 

observations/regions will, in turn, produce biased and inconsistent estimators.  

 

By conducting an in-depth case study using the Auckland region’s data, urban forms, coupled 

with other factors that affect the bus mode share are explored and all these in turn are related 

under a spatial context. The Moran’s I test shows that there is statistically significant 

evidence of the presence of positive spatial autocorrelation. Therefore, by taking into account 

the spatial dependence, the spatial regression models are selected over the non-spatial OLS 

model in order to obtain unbiased and consistent estimators. The empirical results show that 

the bus mode share in one area unit exhibits a positive relationship with the share in 

neighbouring area units.  

 

However, the interpretation of these findings based on SAR and/or SEM models is 

confounded by the strong spatial autocorrelation of the urban form and other transit 

characteristics such as transit supply and socioeconomic/demographic differences across area 

units. By applying the likelihood ratio tests, this paper confirms the existence of spatial 
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autocorrelation in the lags of both dependent and independent variables. This dominating 

spatial issue has been addressed by the use of the spatial Durbin model. Estimated results 

from SDM show that the total effects comprised mostly of spatial spill-over impacts, and 

only a relatively small percentage is attributed to the direct effects on bus mode share that 

arose from own-region changes in any given explanatory variable. For planners and 

developers, the SDM model is not only technically superior, but also preferable for 

evaluating policies and making investment decisions, as unlike traditional estimated 

coefficient interpretations, one can easily unravel total effect into own-region and spatial 

spill-over effect and. The results presented indicate that knowledge of a specific spatial lag 

may provide clues about the importance of future land use patterns on transit ridership. 

References 

 

Anselin L (1980) Estimation methods for spatial autoregressive structures. Regional Science 

Dissertation & Monograph Series No.8. Program in urban and regional science, 

Cornell University 

Anselin L (1988a) Spatial econometrics: Methods and models. Kluwer, Dordrecht 

Anselin L (1988b) Lagrange multiplier test diagnostics for spatial dependence and spatial 

heterogeneity. Geographical Analysis 20: 1–17 

Anselin L (1992) Spatial data analysis with GIS: An introduction to application in the social 

sciences. Technical Report 92-10, National Center for Geographic Information and 

Analysis University of California 

Anselin L (1999) Interactive techniques and explanatory spatial data analysis. In: Longley PA, 

Goodchild MF, Maguire DJ, Rhind, DW (eds) Geographical information systems: 

Principles, techniques, management and applications, pp 251-264. John Wiley & 

Sons, New York 

Anselin L (2002) Under the hood: Issues in the specification and interpretation of spatial 

regression models. Agricultural Economics 27: 247-267 

Anselin L (2003a) Spatial econometrics. In: Baltagi BH (ed) A companion to theoretical 

econometrics, pp 310-330. Basil Blackwell, Oxford 

Anselin L (2003b) Spatial externalities, spatial multipliers and spatial econometrics. 

International Regional Science Review 26: 153-166 

Anselin L (2006) Spatial econometrics. In: Mills TC, Patterson K (eds) Econometric theory, 

pp 901-969. Palgrave Macmillan, New York 



25 

 

Anselin L (2010) Thirty years of spatial econometrics. Regional Science 89: 3-25 

Anselin L and Rey S (1991) Properties of tests for spatial dependence in linear regression 

models. Geographical Analysis 23: 112–131 

Anselin L, Bera A, Florax RJ, Yoon M (1996) Simple diagnostic tests for spatial dependence. 

Regional Science and Urban Economics 26: 77-104 

Auckland Regional Transport Authority (2009) Auckland’s transport challenges. 2009/10 – 

2011/12 Auckland regional land transport programme draft, Auckland Regional 

Transport Authority, Auckland 

Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman, Harlow 

Banister D, Marshall S (2000) Encouraging transport alternatives: Good practice in 

 reducing travel. The Stationery Office, London 

Barton H, Davies G, Guise R (1995) Sustainable settlements: A guide for planners, 

 designers and developers. Severnside Research and Consultancy Unit, University of 

the West of England 

Basu S, Thibodeau TG (1998). Analysis of spatial autocorrelation in housing prices. Journal 

of Real Estate Finance and Economics 17: 61-85 

Benirschka M, Binkley JK (1994) Land price volatility in a geographically dispersed market. 

American Journal of Agricultural Economics 76: 185–195 

Bera A, Yoon MJ (1993) Specification testing with locally misspecified alternatives. 

Econometric Theory 9: 649-658 

Berg L (2002) Prices and constant quality price indexes for multi-dwelling and commercial 

buildings in Sweden. Working Paper 2002:2, Department of Economics, Uppsala 

University 

Bivand R (1984) Regression modelling with spatial dependence: An application of some 

class selection and estimation methods. Geographical Analysis 16: 25-37 

Bresson GJ, Dargay J, Madre, Pirotte A (2004) Economic and structural determinants of the 

demand for public transport: An analysis on a panel of French urban areas using 

shrinkage estimators. Transportation Research Part A 38: 269-285 

Burridge P (1980) On the Cliff-Ord test for spatial autocorrelation. Journal of the Royal 

Statistical Society B (Methodological) 42: 107–108 

Can A (1990) The measurement of neighbourhood dynamics in urban house prices. 

Economic Geography 66: 254-272 

Case  A  (1991) Spatial patterns in household demand. Econometrica 59: 953-965 



26 

 

Case A, Rosen HS, Hines JR (1993) Budget spillovers and fiscal policy interdependence: 

Evidence from the States. Journal of Public Economics 52: 285–307 

Case B, Clapp J, Dubin R, Rodriguez M (2004) Modeling spatial and temporal house price 

patterns: A comparison of four models. Journal of Real Estate Finance Economics 29: 

167-191 

Doreian P (1980) Linear models with spatially distributed data, spatial disturbances or spatial 

effects. Sociological Methods and Research 9: 29–60 

Downs A. (2003) Still stuck in traffic: Coping with peak-hour traffic congestion. Brookings 

Institution Press, Washington, DC 

Du H, Mulley C (2006) Relationship between transport accessibility and land value: Local 

model approach with geographically weighted regression. Transportation Research 

Record 1977: 197-205 

Elhorst JP (2010) Applies spatial econometrics: Raising the bar. Spatial Economic Analysis 5: 

10-28 

Fingleton B (1999) Estimates of time to economic convergence: An analysis of regions of the 

European Union. International Regional Science Review 22: 5-34 

Fingleton B. (2000) Spatial econometrics economic geography, dynamics and equilibrium: A 

third way? Environment and planning A 32: 1481-1498 

Florax RJ, Nijkamp P (2003) Misspecification in linear spatial regression models. Discussion 

Papers No. 2003-081/3, Tinbergen Institute 

Getis A, Mur J, Zoller HG (eds) (2004). Spatial econometrics and spatial statistics. Palgrave 

Macmillan, New York 

Gomez-Ibanez  J (1996) Big city transit ridership, deficits and politics: Avoiding reality in 

Boston. Journal of the American Planning Association 62: 30-50 

Gordon P, Kumar A, Richardson HW (1989) Congestion, changing metropolitan structure 

and city size in the United States. International Regional Science Review 12: 45-56 

Greer M, van Campen B (2011). Influences on public transport utilization: The case of 

Auckland. Journal of Public Transportation 14: 51-68 

Headicar P, Curtis C (1994) Residential development and car-based travel: Does location 

make a difference? Proceedings of seminar C: Environmental issues, pp 117-130. 22nd 

PTRC European Transport Forum, Warwick  

Hurley T, Kilian B, Malzer G, Dikici H (2001) The value of information for variable rate 

nitrogen applications: A comparison of soil test, topographical and remote sensing 



27 

 

information. Technical report, Department of Applied Economics, University of 

Minnesota 

Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous 

autoregressive models. Global Ecology and Biogeography 17: 59–71 

Kitamura R, Mokhtarian P, Laidet L (1997) A micro-analysis of land use and travel in five 

neighbourhoods in the San Francisco Bay area. Transportation 24: 125-158 

Le Gallo J (2002) Économétrie spatiale: L’autocorrélation spatiale dans les modèles de 

régression linéaire. Économie et Prévision 155: 139-157 

Le Gallo J, Ertur C, Baumont C (2003) A spatial econometric analysis of convergence across 

European regions, 1980-1995. In: Fingleton B (ed) European regional growth, pp 99-

129.  Springer, Berlin 

Leenders R (2002) Modeling social influence through network autocorrelation: Constructing 

the weight matrix. Social Networks 24: 21-47 

LeSage JP (2002) Spatial econometrics. PhD topic lectures, Department of Economics, 

University of Toledo 

LeSage JP (2004) Maximum likelihood estimation of spatial regression models. Lecture 1, 

Department of Economics, University of Toledo 

Lesage JP, Fischer MM (2008) Spatial growth regressions: Model specification, estimation 

and interpretation. Spatial Economic Analysis 3: 275-340 

LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall/CRC, 

London 

LeSage JP, Pace RK (2010) Spatial econometric models. In Fischer MM, Getis A (eds) 

Handbook of applied spatial analysis: Software tools, methods and applications, pp 

355-376. Springer, Berlin 

Maat K, van Wee B, Stead D (2005) Land use and travel behaviour: Expected effects from 

the perspective of utility theory and activity based theories. Environment and 

Planning B: Planning and Design 32: 33–46 

Manski CF (1993) Identification of endogenous social effects: The reflection problem. 

Review of Economic Studies 60: 531–542 

Moran PAP (1948) The interpretation of statistical maps. Journal of the Royal Statistical 

Society B (Methodological) 10: 243-251 

Næss P, Røe P G, Larsen S (1995) Travelling distances, modal split and transportation energy 

in thirty residential areas in Oslo. Journal of Enviromental Planning and Management 

38: 349-370 



28 

 

Ord JK (1975) Estimation methods for models of spatial interaction. Journal of American 

Statistical Association 70: 120-126  

Osland L (2010) An application of spatial econometrics in relation to hedonic house price 

modeling. Journal of Real Estate Society 32: 289-320 

Pace RK, Gilley OW (1997) Using the spatial configuration of the data to improve estimation. 

Journal of Real Estate Finance Economics 14: 333-340 

Paulley N, Balcombe R, Mackett R, Titheridge H, Preston J, Wardman M, Shires J, White P 

(2006) The demand for public transport: The effects of fares, quality of service, 

income and car ownership. Transport Policy 13: 295-306 

Pinkse J, Slade ME (1998) Contracting in space: An application of spatial statistics to 

discrete-choice models. Journal of Econometrics 85: 125–154 

Rey SJ, Boarnet MG (2004) A taxonomy of spatial econometric models for simultaneous 

equations systems. In: Anselin L, Florax RJ, Rey SJ (eds) Advances in spatial 

econometrics: Methodology, tools and applications, pp 99-119. Springer, New York 

Roe B, Irwin EG, Sharp JS (2002) Pigs in space: Modeling the spatial structure of hog 

production in traditional and nontraditional production regions. American Journal of 

Agricultural Economics 84: 259–278 

Smith TE, Wu P (2009) A spatio-temporal model of housing prices based on individual sales 

transactions over time. Journal of Geographical Systems 11: 333-355 

Statistics New Zealand. (2010). Subnational population estimates at 30 June 2010 

(boundaries at 1 November 2010). Statistics New Zealand. Auckland 

Statistics New Zealand. (n.d.) Area unit. Retrieved from: 

http://www.stats.govt.nz/surveys_and_methods/methods/classifications-

andstandards/classification-related-stats-standards/territorial-authority/definition.aspx 

Steiner RL (1994) Residential density and travel patterns: Review of the literature. 

Transportation Research Record 1466: 37–43 

Tobler WR (1979) Cellular geography. In: Gale S, Olsson G (eds), Philosophy in geography. 

Reidel, Dordrecht 

Transportation Research Board (1996) Transit and urban form. TCRP report 16, National 

Academy Press, Washington DC 

Vance C, Hedel R (2007) The impact of urban form on car travel: Disentangling causation 

from correlation. Transportation 34: 575-588 

Wall MM (2004) A close look at the spatial structure implied by the CAR and SAR models. 

Journal of Statistical Planning and Inference 121: 311–324 



29 

 

Weiss MD (1996) Precision farming and spatial econometric analysis: Research challenges 

and opportunities. American Journal of Agricultural Economics 78: 1275–1280 

Yu D, Peterson NA, Sheffer MA, Reid RJ, Schnieder JE (2010) Tobacco outlet density and 

demographics: Analysing the relationships with a spatial regression approach. Public 

Health 124: 412-416 

Zhao F, Chow LF, Li MT, Liu X (2006) Transit ridership model based on geographically 

weighted regression. Transportation Research Record: Journal of the Transportation 

Research Board 1972: 105-114 

 

 


