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Executive summary  

Methods 

Input-output tables are a statistical summary of the flow of industry inputs into production and the 

subsequent use of that output – the focus is on the mechanisms of production. Regional input-output 

tables extend this, allowing regional differences in production and use – the focus is on both the 

technology of production and trade. 

Accurate assessments of input-output tables (national or regional) require extensive and expensive 

surveying to acquire data. Regional tables are more effort to produce and require more surveying than 

national tables. New Zealand produces national tables every five years. 

Because of the expense in producing tables from survey data, a number of methodologies have been 

developed to estimate national or regional input-output tables using a previously developed national table 

as a basis. 

The commonly adopted approaches to estimate regional input-output tables strongly rely on ‘bi-

proportional balancing’ methods for updating or regionalising national level input-output tables. The 

methods scale the rows and columns of the input-output table in order to satisfy a set of constraints, such 

as the column sums giving the total outputs. Recent results unify these approaches into a Bayesian 

optimisation problem. This formulation allows greater flexibility in application as it can be applied when 

the available data is relatively sparse, and it provides estimates of the uncertainty of the table’s entries. 

The statistical data New Zealand collects about production, consumption and trade is not sufficient to 

employ the commonly adopted approaches to producing regional input-output tables (that is, input-output 

tables that include flows of goods and services between regions and industries). 

This paper presents a methodology for producing the most general form of regional input-output table 

with the data available, with error estimates. This methodology is novel. It is a Bayesian approach that 

requires ‘best guesses’ (priors) to be established for inter-regional trade and industry production 

technologies where those priors are updated in order to satisfy constraints identified from actual data. 

The optimisation problem forming the core of the methodology requires constraints on the flows of 

intermediate inputs between industries and regions. We adapt a technique created to deal with ‘cross-

hauling’ (concurrent import and export of the same goods) to identify constraints on bi-lateral regional 

trade. This approach is novel. 

To employ the method will require: 

• a data set to be assembled from Statistics NZ data and possibly the Longitudinal Business Database. 

This assembly should be designed to be automated, so updates of the tables can be done without 

great effort 

• the development of a ‘gravity model’ of trade to establish a best guess for inter-regional trade 

proportions in New Zealand. Gravity models are well founded in economic theory and could be fitted 

using data from regional input-output models developed overseas 

• a solution to the optimisation problem, again as a script that can be re-run without great effort. 
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Use 

Once built, the regional input-output model could be made available as a public resource and 

automatically refreshed annually or quarterly. 

The error estimates will provide intelligence on where effort might be needed to improve the 

understanding of regional trade and regional production technology. 

Third-party data 

We examined four sources of data that might be useful for improving the table’s accuracy: Xero, eRUC, 

Marketview and Qrious data. In each case, there was significant work to be done to make the data useable 

for improving the regional input-output model. A key challenge in making use of eRUC and Qrious data is 

that the data does not describe monetised units, which is what is needed for input-output development.  

Xero data was the most promising of the four third-party data sources, but it was probably not 

representative of the business population, being highly skewed to small-to-medium sized enterprises and 

‘not economically significant’ businesses. 

Marketview data was the most useful for estimating household consumption. 

Application to transport 

Regional input-output tables can be used to assess the economic impact of transportation on the economy 

in a number of ways. Since transportation input is accounted for as a cost, the amount of value added and 

‘absorbed’ by a transportation industry can be used as an index of transportation efficiency – low amounts 

when trade is high indicate a reduced transport burden. 

The indirect impact of transport can be measured by understanding how important a region is to the trade 

in value added to other regions. Important regions that are inefficient are a drag on the economy and 

targets for investment. 

Regional input-output tables can be analysed to show the inter-dependencies between transport industries 

in the various regions, an understanding of which is useful for regional transport industry development. 

 

Abstract 

A methodology was developed with which to produce regional input-output tables for New Zealand. The 

methodology provides estimates of uncertainty for the entries of the table, allows the incorporation of 

third-party data, and makes best use of available data, be that official statistics, third-party data, or 

subject matter expertise. 

The method contains a novel approach to estimating regional trade, allowing for cross-hauling. 

In addition to the methodology for estimating regional input-output tables, this work develops indicators 

of the economic impact of transport and transportation industries using information available in regional 

input-output tables. The methodology is applied to the World Input-Output Database for the year 2000. 

The work took place between July and December 2016. 
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1 Introduction 

The development of input-output tables and analysis was pioneered by Leontief, work for which he 

received a Nobel Memorial Prize in Economics. It built on Stone’s work on national accounts to provide a 

view of what role intermediate inputs play in final production. 

Isard is credited with the development of regional input-output tables. Whereas national input-output 

tables are about giving greater granularity to the national accounts through an understanding of the 

technology of production, regional input-output tables are about regional variation in that technology and 

an understanding of the role of inter-regional trade in an economy. 

Building national level input-output tables is highly resource intensive, requiring extensive surveying and 

data examination. It is generally not feasible to extend the approach to a regional level (though countries 

have done so, such as Finland and Japan), so that one of the central issues in developing regional input-

output tables is how to use the data available (including the national level table and survey data and so-

called ‘superior’ data) to estimate inter-regional trade and the regional variations in production 

technology. 

The collection of techniques varies, from ad-hoc and unsupported by theory, through to complex, theory-

driven models. Which ones can be applied to a given situation is largely up to what data is available and 

what purpose the regional input-output table would be put to.  

We begin by surveying the literature to understand the types of regional input-output table, and the 

methods employed to estimate them. Each of these methods requires data, and the methods that might 

be employed in developing New Zealand regional input-output tables are constrained by the data that New 

Zealand collects.  

Having surveyed the literature, we then take stock of what data New Zealand collects and proceed to 

develop a methodology that makes best use of this data, however patchy it might be. By ‘best use’ we 

mean a methodology that builds tables to any desired level of granularity, allows the use of data from a 

variety of sources and which provides error estimates of the table entries. For this reason, we immediately 

discard approaches that do not have these qualities.  

Official statistical data is not the only data that might be useful for creating regional input-output tables. 

We take the view that a regional input-output table is both a set of accounts, giving amounts of inputs and 

amounts of production and consumption, and also a description of the trade, production, and 

consumption dynamic that is the New Zealand economy. Data that describes systems which are influenced 

by that dynamic can be statistically modelled in terms of any regional input-output table that we 

developed using the official statistical data – if the data can be made representative of the business 

population, then the results of the model can be used to improve the accuracy of the regional input-output 

table. We discuss this approach for four sources of data: Xero, Qrious, eRUC and Marketview. The case of 

Xero is most likely to be useful and it is that case that we most highly detail. 

We conclude by developing a number of methods for using regional input-output tables to assess the 

economic impact of transportation. These methods are illustrated using tables from the World Input-

Output Database (WIOD) (Dietzenbacher et al 2013). 
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2 Input-output tables 

An (industry-by-industry)
1
 input-output table (IOT) is an empirical description of an area’s economy over 

a period in terms of: 

• a breakdown of productive entities into industrial units 

• the flow of monetised intermediate inputs between industries in the period in question 

• the total output of each industry in the period 

• the value added in production by each industry, often broken down into labour costs, consumption of 

capital, and operating surplus 

• the final demand for each industry’s production, including exports, household consumption, 

government consumption and capital investment 

• the use of imports by industries and in directly meeting final demand. 

The areas in question are typically countries and the period a calendar year; often an IOT represents a 

national economy over that nation’s tax year. 

Monetary values are typically in either purchasers’ prices, producers’ prices, or basic prices. Producers’ 

prices differ from basic prices by net taxes on production; purchasers’ prices differ from producers’ prices 

by the cost of transport and the retail margin; value-added tax is removed in either case. Thus, when a 

table is in basic prices, the explicit transport margins have been removed from transactions and 

accounted for as a transaction between the purchasing industry and the transport industry. Similarly for 

retailing or wholesaling costs, basic prices represent the money the producer receives from a purchase 

before taxes or subsidies on production, whereas the purchaser’s prices represent the money the 

purchaser pays, and the producer’s prices are what the producer receives. The table below illustrates: 

Table 2.1 Differences between purchasers’, producers’ and basic prices 

Price Production costs Taxes on production Transport, retail or 

wholesale costs 

Purchasers’ Included Included Included 

Producers’ Included Included Not included 

Basic Included Not included Not Included 

 

Some industrial units produce in several industries. Such units will have a primary industry and (possibly 

several) secondary industries; the production that belongs to the secondary industries is called 

secondary production. In some instances, an IOT will account for secondary production by re-allocating 

the secondary production to the appropriate industry, so the IOT more accurately represents the use of 

goods and services in production, rather than representing the transfer of inputs between collections of 

businesses or consumers. Since 2007 New Zealand has not accounted for secondary production in this 

way, with the exception being transport, retail trade and wholesale trade services. 

                                                   

1
 There are also product-by-product input-output tables. These tables summarise the flow of products and services into 

intermediate production and the subsequent consumption of products and services by sectors of the economy. 

Arguably, regional product-by-product IOTs are more of interest in transportation planning and investment. Building 

regional product-by-product IOTs using methods analogous to those recommended in this work presents additional 

difficulties in that much of the statistical data useful for estimating is in terms of industries and not products. 
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Transport services may be provided by businesses that are not primarily in the transport sector; and 

retailing and wholesaling services may be provided by businesses that are not in the retail or wholesale 

trades. Nevertheless, the difference between the purchaser’s price and the cost of production is the sum 

of the transport margin and the wholesale and retail margins. In the production of national IOTs this 

difference is split into the component margins to estimate the input of transport, wholesale and retail 

into production, regardless of whether that service is provided by businesses whose primary industry is 

transport, wholesale, or retail, respectively. 

An additional accounting convention for national IOTs concerns the treatment of imported goods and 

services. As any product, imported products have transport, wholesale and retail margins, but they 

generally lack a record of what industry group produced the product and what industry purchased the 

product.  

Imports are accounted for by assigning them to the industries that would produce the imported 

products. In the regional setting, it is as though there is an additional region called, ‘rest of the world’, 

whose industries can export only to the same industry in other regions of the country. Generally, the 

apportionment of an imported item produced by several industries is according to the relative levels of 

domestic production by those industries. Thus, the total output of an industry is a pool of products, 

some produced domestically and some imported – that pool can be considered net of exports or gross, 

leading to the notion of competitive and non-competitive imports.  

Imports are of two types: competitive and non-competitive. Competitive imports are imports of goods 

and services which, availability allowing, could be substituted for domestic production. In some IOTs 

only non-competitive imports into industries are reported and competitive imports are subtracted from 

exports, so exports are actually a net figure. New Zealand does not account for imports in this way – 

instead, as described in the paragraph above, imported goods and services are allocated to industries 

proportional to the ‘market share’ an industry has for the product or service, regardless of whether they 

are competitive or non-competitive goods and services. The implication of this is the relative mix of 

intermediate inputs into an industry’s total output (which includes imports) cannot be viewed as a 

production function. 

2.1 The structure of an input-output table 

Formally, an IOT consists of: 

• a table of intermediate inputs, Z, where 𝑍 = [𝑍𝑖𝑗] and 𝑍𝑖𝑗  is the amount of production by industry i used 

by industry j 

• a table of final demand, Y. Y has typically four columns (exports, household consumption, government 

consumption, and capital investment and changes in stocks) and a row for each industry plus imports. 

Let e denote the vector of exports and f denote the vector of domestic final demand, an entry for each 

industry 

• a table of value added, V. V typically has at least two rows (one for labour costs and other for total 

value added), and a column for each industry. Let v denote total value added by industry 

• a table or vector of imports, M. If a vector, M records the imports by each industry and directly by final 

consumers; if a table, there will be an additional row for taxes on imports. Let m denote the row that is 

imports, an entry for each industry 

• a vector of total production x, with an entry for each industry. 

As in the national accounts, there are accounting identities that must hold (supply equals demand): 
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𝑥𝑖 = ∑ 𝑍𝑖𝑗

𝑗

+ 𝑚𝑖 + 𝑣𝑖 

𝑥𝑖 = ∑ 𝑍𝑗𝑖 + 𝑒𝑖 + 𝑓𝑖

𝑗

 

(Equation 2.1) 

 

If we let i  be the vector of ones (of the appropriate length) then this can be written in vector form as: 

𝒙 = 𝒊𝒕𝑍 + 𝒎 + 𝒗 

𝒙 = 𝑍𝒊 + 𝒆 + 𝒇 

(Equation 2.2) 

2.2 Technical coefficients 

The technical coefficients for an IOT are of the form: 

𝑎𝑖𝑗 =
𝑍𝑖𝑗

𝑥𝑗
 

(Equation 2.3) 

 

so that 𝑎𝑖𝑗  is the amount of input required from industry i in order to produce a unit of production by 

industry j. Often the collection of technical coefficients is thought of as defining a production function 

with constant returns to scale – this is sensible only when imports are only non-competitive imports. 

Indeed, suppose the output of an industry consists of two products, one produced domestically and the 

other imported. If some imports are competitive (that is, the domestically produced product) then 

doubling intermediate inputs and doubling imports produces relatively more domestic products than non-

competitive imports, so the return to scale is not constant. When some imports are competitive an 

adjustment should be made when calculating technical coefficients to reallocate the competitive imports 

to exports, possibly producing negative export values. In practice, the information required to do this is 

not available (especially for services) and one must make recourse to estimates or settle for production 

functions that do not have a constant return to scale. 

Note that A = [aij] satisfies: 

x = Ax + f + e (Equation 2.4) 

which is equivalent to: 

(I − A)x = f + e (Equation 2.5) 

The matrix (I−A) has an inverse
2
 provided every industry has either some imports or provides some 

value added, which is generally the case. It is generally denoted L, and called the Leontief inverse or the 

requirements matrix – so called because Lij can be interpreted as the required input by i when there is an 

additional unit of final demand for industry j. 

The Leontief inverse provides a measure of impact the economy receives when an industry’s final 

demand has a unit increase. This is called the industry’s multiplier. Multipliers are used in industrial 

analysis, and also when assembling IOTs to guide which industries need special survey focus. (Industries 

that use little imports and add relatively small amounts of value to production have high multipliers). 

                                                   

2
 (I-A) has an inverse provided that the eigenvalues of A have modulus less than 1. The eigenvalues of A are the same as 

the eigenvalues of At. Let y be an eigenvector of At with eigenvalue λ - scale y so that the entries sum to 1. Then 𝜆 =

𝜆∑𝑦𝑖 = ∑ (𝐴𝑡𝑦)𝑖 = ∑ 𝑎𝑗𝑖𝑦𝑗 ≤ ∑ 𝑦𝑖 = 1𝑖𝑖𝑗𝑖 , with equality only when every industry i has no imports and has no value added. 
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IOTs are the result of combining supply and use tables. To assemble a supply or use table one needs to 

specify a classification of goods and services into products; a supply or use table has a row for every 

product and a column for every industry. A supply table records the value of an industry’s production of 

each product. A use table records the value of the products (including imports) used by each industry in 

production. Generally, there are more products than industries, so some industries will supply (and use) 

multiple products. 

Suppose U is a use table and V a supply table. If the number of industries was equal to the number of 

products and each industry produced a single product (so that V is a diagonal matrix of total outputs), 

then the obvious way to create the inter-industry transactions portion of the IOT is as Z = U, with 𝐴 = 𝑈𝑉−1
. 

When V is not diagonal or the number of industries is not equal to the number of products, then this 

prescription no longer makes sense. 

The problem is to derive an industry’s input into another industry’s production by assigning the first 

industry’s production to the other industry’s use. When more than one industry produces a product, there 

is an infinitude of ways to do this. 

In the EuroStat manual for IOTs (Eurostat 2008), there are two methods proposed for producing industry-

by-industry tables. 

1 The fixed industry-sales structure model. In this approach, it is assumed each industry has its own 

fixed sales structure, regardless of its product mix. Each industry ‘decides’ how much of each of the 

products it produces that it is going to sell, regardless of whether it produces enough to cover that. 

This sales structure is stipulated by choosing a left inverse for V, call it H and forming a matrix T by 

𝑇𝑖𝑝 = ∑ 𝑉𝑞𝑖𝐻𝑖𝑝𝑞 . 𝑇 is the result of scaling each row of 𝐻 by the total output of the appropriate industry – 

when 𝑉 is diagonal 𝑇 is the identity matrix. Otherwise it is a measure of how much of product 𝑝 

industry 𝑖 provides.  

The matrix Z is then: 

Z = TU (Equation 2.6) 

The reader can check the column sums of 𝑍 equal the row sums of 𝑈, that is, 𝑍 accurately reflects the 

total use. However, total supply may not be accurately reflected. Being a left-inverse for V implies 

∑ 𝑉𝑝𝑖𝐻𝑖𝑝 = 1𝑝 , so heuristically, 𝐻𝑖𝑝 ≃ 1/(|𝑃𝑖|𝑉𝑝𝑖), where Pi is the set of products that industry i produces. 

With this notion, the proportion of use of product p by industry j that comes from industry i is the ratio 

between the average amount of production per product that industry i does and the amount of 

production by industry i of product p. A diversified industry therefore can contribute less than an 

industry that produces only one product. It is possible under this model for industries to supply more 

than they produce, leading to negative entries in the IOT. In general, this is a very flawed model. 

2 The fixed product-sales structure model. In this model, an industry has a market share for a product in 

proportion to the amount of the product it produces. Precisely, we form the industry-by-product 

matrix: 

𝑇𝑖𝑝 =
𝑉𝑝𝑖

∑ 𝑉𝑝𝑗𝑗

 
(Equation 2.7) 

and set: 

Z = TU (Equation 2.8) 

and: 

𝐴 = 𝑍Δ(𝑈𝑡𝒊)−1
 (Equation 2.9) 
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Where we use the notation Δ(𝑥) for the diagonal matrix with 𝑥 on the diagonal.  

This model is well-defined and does not lead to negative entries in the IOT. This is the model 

Statistics New Zealand employs when producing IOTs. 

For additional information regarding the construction and analysis of IOTs we refer you to Miller and Blair 

(2009); ten Raa (1994; 2010); Dietzenbacher and Lahr (2013); Angel Tarancon et al (2008); De Mesnard 

(2002a); 2004c; 2007; 2009; 2011); Dietzenbacher (1995; 2006); Dietzenbacher et al (2013); Jansen 

(1994); Jiang et al (2010); Kim et al (2015); Koopman et al (2014); Liew (2000; 2005); Los et al (2016); 

Mahajan (2006); Oosterhaven (1984; 1996); Polenske (1995); Rampa (2008); Rose and Allison (1989); 

Schwarm et al (2006); Viet (1994); Wolff (1994); and Wood and Lenzen (2009). 
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3 Regional input-output 

If national IOTs concern production and final consumption, regional IOTs concern production, 

consumption and trade. The scale is set by the instance of application: it could be nations and states or 

provinces; it could be cities and boroughs; it could be a set of nations with open borders such as the EU. 

The term ‘regional IOT’ can mean several things, and is often confused with a number of other terms 

(which are themselves often used incorrectly or ill-defined). 

We set some definitions that we will adhere to throughout this document: 

• A regional IOT is an IOT for a region within a larger area (say a country) in which a distinction is made 

between overseas trade involving the region and trade between the region and its complement in the 

larger area. We use the acronym RIOT to refer to a regional IOT. 

• An inter-regional IOT is an IOT in which each industry within a region is considered to be a separate 

industry, so that monetary flows are recorded spatially (between regions) and industrially. We refer to 

such tables by the acronym IRIOT. 

Note that in an IRIOT there is full specification of regional and industrial inputs into a regional-

industry’s production, not just aggregated totals by region or industry. We also note there need not be 

the same industry classification in each region, so different regions will have different numbers of 

industries and the industries in one region may not cleanly map onto or into the industries in another 

region. 

• A multi-region IOT is in a sense an approximation to an IRIOT, in which instead of a full specification 

of regional-industry flows one has: 

- for each region, a record of the amount of input needed from each industry (regardless of source 

region) in order to create a unit of production by a given industry – this is called a regional 

technical coefficient 

- for each industry, a record of how much production from that industry in a region is intermediate 

input into production in any other region. 

We refer to a multi-region IOT as a MRIOT. 

There are numerous examples of RIOTs and MRIOTs, though few IRIOTs. For examples, see Bhattarai 

(2007); Boomsma and Oosterhaven (1992); Chenery (1953); Deng et al (2014); Dietzenbacher et al (2013); 

Eding et al (1999); Flegg and Tohmo (2013); Gilchrist and St Louis (1999); Kipnis (1976); Lenzen (2001); 

Morrison and Smith (1974); Oosterhaven and Escobedo-Cardeñoso (2011); Stoeckl (2012); Zhang et al 

(2015). 

There is a lot of flexibility in these definitions in how trade between regions is accounted for. For example, 

the WIOD (Dietzenbacher et al 2013) is an example of the most general form of IRIOT in the sense that 

industry imports for intermediate production and consumption are tracked by industry and sector of 

consumption. In the WIOD, the regions are nations and the industry classification is consistent across all 

the nations. We will revisit the WIOD in later sections where we develop approaches to measuring the 

impact of transport on economies. 

Other IRIOTs are less general. For example, Finland produces an IRIOT in which the regional industry 

inputs into national industry production and national sectoral consumption are recorded, but production 

and consumption of industrial production is not accounted for at a regional level. Thus, as an example, 

the amount of output produced by the agriculture, hunting and related services industry in the Uusimaa 
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region that is consumed by Finnish households is accounted for, but the regions in which that 

consumption occurs is not specified.  

3.1 A remark on transport, wholesale and retail services in 

the regional context 

In a national IOT in basic prices, the transport and retail margins in the transfers between industries are 

allocated to the transport or retail industries. When we consider regional input-output we need to consider 

the location of the industry’s economic units, which for retailing is without complication, but for 

transportation is not as straightforward. When a delivery is made between two regions by a transport 

business whose headquarters is in a third region and which has depots in all these regions and four other 

regions, where should the supply of transportation be allocated? In other industries where the means of 

production might be owned by an entity in a different region it is the practice to allocate the production to 

the region in which production occurs, regardless of where the profits and taxes end up. In transportation, 

the ‘means of production’ can be mobile and not readily assigned to any one region. 

In Statistics NZ’s methodology for developing regional GDP (Statistics NZ) these issues are discussed in 

terms of two principles of allocation – the residence principle (where the physical and legal residence of 

producer is allocated the production), and the territory principle (where the location of activity is allocated 

the production). In many instances, the physical and legal residence of the producer is the same region as 

where the production occurs, but transport is one of the industries where that is not the case, and the 

practice adopted differs across different types of transport, for example air transport is distributed across 

regions whereas shipping is allocated to the base of operations. 

Yet in input-output accounting, transport is accounted for as a margin on a financial transaction, so in the 

regional setting it is appropriate a transport margin is accounted for as the provision of transportation 

services from the region where the seller was located to the region where the buyer was located. So there 

is conflict between the accounting conventions for regional GDP and those of the input-output framework 

should we extend that framework to regional input-output. 

If a RIOT is to be useful for analysing the economic impact of transportation one would ideally want the 

transportation costs allocated on a territory basis. Under this scheme, to each amount of transfer 

between two regional industries there would be an amount transferred by the transport industry in the 

region of origin to the regional industry of delivery. From this one could see whether some regional 

industries were incurring larger transport costs per unit of production than others and whether this was 

because they were physically far away from their suppliers or simply were subject to greater costs due to 

poor infrastructure or a lack of competition. If the transportation costs are recorded as a transfer 

between the residence region of production and the regional industry of delivery, then it would be 

possible to detect when a regional industry has high transportation costs but not whether it was due to 

distance from suppliers or the quality of transport infrastructure at destination or origin.  

We now introduce some notation that we will employ to make these notions precise and show how a 

MRIOT provides an approximation to an IRIOT. 

3.2 Key notation 

We extend the notation used to describe IOTs to the regional setting. For ease of exposition we will 

assume each of the R regions has its industrial output classified into the same N industries. 
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In the following list of definitions it should be understood i and j refer to industries and r and s refer to 

regions. 

• 𝑍𝑖𝑗
𝑟𝑠

 is the amount of input from industry i in region r provided to industry j in region s as intermediate 

inputs. 

• 𝑓𝑖
𝑟𝑠 is the amount of domestic final demand in region s for production by industry i in region r. 

Similarly, we define 𝑒𝑖
𝑟

 and 𝑌𝑟𝑠 – a matrix of final demand analogous to Y.  

• 𝑥𝑖
𝑟
 is the total production by industry i in region r. 

• 𝑣𝑖
𝑟  is the value added in production by industry i in region r. 

• 𝑚𝑖
𝑟  is the amount of imports from abroad into industry i in region r. 

For a variable of the form 𝑔𝑖𝑗
𝑟𝑠  or𝑔𝑖

𝑟  or 𝑔𝑖
𝑟𝑠  the use of a ‘bullet’ in an index location indicates a summation 

over the range of that index, eg: 

• 𝑔𝑖𝑗
∙𝑠 = ∑ 𝑔𝑖𝑗

𝑟𝑠
𝑟  

• 𝑔𝑖∙
𝑟∙ = ∑ 𝑔𝑖𝑗

r𝑠
𝑗𝑠  

• 𝑔𝑖
∙𝑠 = ∑ 𝑔𝑖

𝑟𝑠
𝑟 . 

3.3 A note on error and uncertainty 

There is error and uncertainty in any IOT. The survey-based tables will have uncertainty due to the sample 

size and inherent variability of the survey population; in addition, the lack of specification of who buys 

what from whom leads to error in the table over all. When tables are updated or produced with non-survey 

techniques more error and uncertainty is introduced. 

The key issue is that generally there is little or no ‘gold standard’ data with which to evaluate the accuracy 

of an IOT, regional or otherwise. Researchers tend to focus on sensitivity analyses, to understand how 

robust a table is to small perturbations in the construction. There are numerous schemes for assessing 

sensitivity or for comparing two constructions. 

The recently developed Bayesian approaches to IOT estimation are particularly attractive as the uncertainty 

estimates are ‘built-in’ and it is feasible to perform IOT analysis that incorporates the uncertainty. See 

section 5.2 for more details. 

For more on error and uncertainty in (regional) IOTs see Butterfield and Mules (1980); Denman (1966); 

Jensen (1980); Lahr and Stevens (2002); Roy (2004); Stover (1994); Temurshoev (2015). 

3.4 Problem formulation 

With this notation, we see that: 

• A RIOT for a region r requires the estimation of: 

- 𝑍𝑖𝑗
𝑟𝑟

 intra-regional inter-industrial flows 

- 𝑥𝑖
𝑟
 regional industry total output 

- 𝑣𝑖
𝑟  regional industrial value added 

- 𝑓𝑖
𝑟𝑟  final regional consumption of regional production 
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- 𝑚𝑖
𝑟
 regional overseas imports 

-  𝑒𝑖
𝑟
regional exports to overseas 

-  𝑓𝑖
𝑟∙

 regional domestic exports to final consumption 

-  𝑍𝑖∙
𝑟∙
 regional domestic exports (and internal use) for intermediate use 

- 𝑍𝑖∙
∙𝑟
 regional domestic intermediate use 

- 𝑓𝑗
∙𝑟
regional domestic final consumption. 

• An IRIOT for a set of regions and industries requires the estimation of: 

- 𝑍𝑖𝑗
𝑟𝑠

 inter-regional inter-industrial flows 

- 𝑥𝑖
𝑟
 regional industrial final production 

- 𝑣𝑖
𝑟
 regional industrial value added 

- 𝑓𝑖
𝑟𝑠

 final consumption 

- 𝑚𝑖
𝑟
 overseas imports 

- 𝑒𝑖
𝑟   exports. 

• And finally, a MRIOT requires: 

- 𝑍𝑖𝑗
𝑟𝑟

 intra-regional inter-industrial flows for each region 

- 𝑍𝑖𝑗
∙𝑟
 intermediate inputs into industry j in region r ignoring the source region 

- 𝑍𝑖∙
𝑟𝑠

 intermediate input from industry i in regions r into region s, regardless of the destination 

industry 

- 𝑣𝑖
𝑟
 value added 

- 𝑓𝑖
∙𝑠  final demand for production from industry i in region s 

- 𝑚𝑖
𝑟
 overseas imports 

- 𝑒𝑖
𝑟
 exports. 

Thus, regional technical coefficients as introduced in the description of MRIOTs are matrices: 

𝐴𝑟 = [𝐴𝑖𝑗
𝑟 ] (Equation 3.1) 

 

so that: 

𝐴𝑖𝑗
𝑟 =

𝑍𝑖𝑗
∙𝑟

𝑥𝑗
𝑟  

(Equation 3.2) 

In other words, 𝐴𝑖𝑗
𝑟

 is the amount of input obtained from industry i in order to produce a unit of production 

by industry j in region r. 

This is different from the regional input coefficients matrices 𝐴𝑟𝑠 = [𝐴𝑖𝑗
𝑟𝑠] for IRIOTS, where: 

𝐴𝑖𝑗
𝑟𝑠

 

=
𝑍𝑖𝑗

𝑟𝑠

𝑥𝑗
𝑠  

(Equation 3.3) 
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The regional technical coefficients are much more likely to resemble the national technical coefficients, 

provided industrial production is homogenous. The regional input coefficients are related to the technical 

coefficients but are influenced by the inter-regional patterns of trade. A key issue in developing IRIOTs and 

MRIOTs is to understand inter-regional trade. 

Trade coefficients relate the regional technical coefficients to the regional input coefficients. Described 

most generally, trade coefficients are of the form 0 ≤ 𝑇𝑖𝑗
𝑟𝑠 ≤ 1, where: 

𝐴𝑖𝑗
𝑟𝑠 = 𝑇𝑖𝑗

𝑟𝑠𝐴𝑖𝑗
𝑠
 (Equation 3.4) 

 

Note this formulation allows domestic imports (that is, intermediate input by industry 𝑖 in region 𝑟 into 

production by industry 𝑗 in region 𝑠 ≠ 𝑟) to be treated differently from overseas imports. If overseas were a 

region 𝑟 and imports were accounted for as in a national IOT then 𝑇𝑖𝑗
𝑟𝑠 = 1 if and only if 𝑖 = 𝑗, since 

industrial output is treated as a pool. However, if information exists to track the industry of the importer 

we need not impose this restriction on the trade coefficients. 

A complication in estimating trade coefficients is the phenomenon of cross-hauling, in which there is 

concurrent trade by an industry between regions – that is, a good produced in one region is exported and 

a similar good imported into the same region. This is related to the heterogeneity of production within 

industries and is the focus of a later section. 

To use a MRIOT to approximate an IRIOT the trade coefficients are approximated by: 

𝑇𝑖𝑗
𝑟𝑠 = 𝑇𝑖

𝑟𝑠 =
𝑍𝑖∙

𝑟𝑠

𝑍𝑖∙
∙𝑠  

(Equation 3.5) 

 

This is the same as assuming industrial outputs are pooled and then distributed, as in the treatment of 

overseas imports in an IOT. We estimate 𝐴𝑖𝑗
𝑟𝑠

 and 𝑍𝑖∙
𝑟𝑠  by: 

𝐴𝑖𝑗
𝑟𝑠 = 𝑇𝑖

𝑟𝑠𝐴𝑖𝑗
𝑠 =

𝑍𝑖∙
𝑟𝑠

𝑍𝑖∙
∙𝑠

𝑍𝑖𝑗
∙𝑠

𝑍∙𝑗
∙𝑠 

(Equation 3.6) 

 

𝑍𝑖∙
𝑟𝑠 = 𝑇𝑖𝑗

𝑟𝑠𝑍𝑖∙
∙𝑠
 (Equation 3.7) 

 

This model for trade coefficients, where it is assumed the industry of destination is not a determinant of 

trade, is referred to as the Chenery-Moses model after its creators (Chenery 1953; Moses 1955). When the 

industry 𝑖 is a transportation services industry, this model assumes all industries in a region use 

transportation according to the relative needs for transportation, regardless of whether some industries 

are more dependent on products of certain regions than others. Thus, the Chenery–Moses model is 

unlikely to estimate transport service imports accurately. However, the Chenery-Moses model has the 

attraction of generally being implementable with the data available. 

3.5 Leontief’s balanced regional model 

The output of some industries is likely to be consumed in the region of production, whereas for other 

industries, the output is more likely to be used nationally or exported. Leontief developed an approach to 

producing MRIOTs that relied on a classification of industries into regional industries and national 

industries, with the former being mostly consumed within the regional of production and the latter not. 

Examples of regional industries would be wholesaling, retailing, real estate, local government, or 

takeaways. National industries might be electricity generation, education (as some people attend boarding 
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schools or university away from their region or country of residence, or study via correspondence), central 

government, and road transportation. 

The ingredients for the approach are: 

• a decomposition of the set of industries into regional industries and national industries 

• for each region s a vector 𝑝𝑠
 that provides the proportion of each national industry’s output produced 

in s 

• for each region s the vector fR(s) of final demand in region s for the outputs by the regional industries 

• a national technical coefficients table A and national industrial output x, final demand f and exports e. 

Re-index the set of industries so the first r are the regional industries and the final R−r are the national 

industries. With this, a national matrix of input coefficients A takes the block form: 

𝐴 =  [𝐴𝑅𝑅 𝐴𝑅𝑁

𝐴𝑁𝑅 𝐴𝑁𝑁] (Equation 3.8) 

 

the vector of output x can be split as: 

𝑥 =  [𝑥𝑅

𝑥𝑁] (Equation 3.9) 

 

and the vector of final consumption f can be split as: 

𝑓 =  [
𝑓𝑅

𝑓𝑁] 
(Equation 3.10) 

 

Regional industries should have no exports, so we abuse notation and refer to e as the vector of exports 

by national industries – some entries to e may still be zero as there could be national industries that do 

not export (such as, in New Zealand, road or rail transport). 

The relation x = Ax + f still holds and in this notation gives us the following two equations: 

(𝐼 − 𝐴𝑅𝑅)𝑥𝑅 − 𝐴𝑅𝑁𝑥𝑁 = 𝑓𝑅
 (Equation 3.11) 

−𝐴𝑁𝑅𝑥𝑅 + (𝐼 − 𝐴𝑁𝑁)𝑥𝑁 = 𝑓𝑅 + 𝑒 (Equation 3.12) 

 

The production of regional industries in region s consists of the production in regional industries to meet 

final demand in that region and the intermediate input needed to meet that region’s share of national 

industry production, that is: 

𝑥𝑅(𝑠) = (𝐼 − 𝐴𝑅𝑅)−1𝑓𝑅(𝑠) + (𝐼 − 𝐴𝑅𝑅)−1𝐴𝑅𝑁𝑥𝑁(𝑠)
 (Equation 3.13) 

    = (𝐼 − 𝐴𝑅𝑅)−1𝑓𝑅(𝑠) + (𝐼 − 𝐴𝑅𝑅)−1𝐴𝑅𝑁𝑝𝑥𝑁
 (Equation 3.14) 

 

The production of 𝑥𝑁(𝑠)
 also requires input from other national industries in other regions, 

totalling 𝐴𝑁𝑁𝑥𝑁(𝑠)
, and imports from abroad. Hence we can estimate the imports mN(s) for the national 

industries in s as: 

𝑚𝑅(𝑠) = 𝑥𝑁(𝑠) − 𝑣𝑁(𝑠) − 𝐴𝑁𝑁𝑥𝑁(𝑠)
 (Equation 3.15) 

 

Where 𝑣𝑁(𝑠)  is the value added by the national industries in region s. 

The balanced regional model does not provide estimates for the trade coefficients. For a national 

industry in a given region, the model only provides information about how much intermediate input 



3 Regional input-output 

21 

comes from other regions, not broken down by region of origin. Some other technique (say location 

quotients, which we will present shortly) must be brought to bear to provide an origin for the regional 

imports. Nevertheless, Leontief’s regional model can be used to establish constraints on amounts of 

inter-regional imports and exports. 
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4 The general approach to estimating regional 

input-output tables from a national input-

output table. 

Producing IRIOTs, MRIOTS or IOTs from survey data is extremely resource intensive and is done by few 

countries. If the survey approach is not being used, the missing information needs to be obtained 

elsewhere or estimated. This section discusses the general approaches that have been employed in 

estimating IRIOTs and MRIOTs using available data. This data needs to supply estimates of regional 

technical coefficients, regional trade coefficients and regional consumption coefficients. 

There are approaches to estimating inter-regional trade through quantitative models, such as the gravity 

model approach to be discussed later. These approaches are hampered by a lack of data on which to 

build, tune or validate the models, and hence we view them as essentially rules-based approaches to 

assigning values to unknown trade coefficients or similar. The remaining approaches are based on 

developing regional technical coefficients based on having a national table, and then estimating trade so 

pools are output and distributed in such a way as to satisfy regional supply and demand.  

We assume a national table is available and consider the approaches that use a national table as a starting 

point or prior. If the national table is out of date, it may be necessary to update the national table in some 

fashion. 

Whether the task is to develop RIOTs, MRIOTs or IRIOTs, the approaches found in the literature are all 

similar and differ only in specific methods used in each of the four steps. 

1 Update the national table (which may be out of date) to be in accord with current or new data. 

2 Regionalise the national technical coefficients matrix to form regional technical coefficients. 

3 Estimate trade coefficients. 

4 Estimate regional exports and imports and consumption. 

The GRIT method, which stands for generation of regional input-output tables, was developed in 

Australia by Jensen and West, (see Hewings and Jensen 1986; Jensen et al 1979; and West 1990). 

Originally developed to produce RIOTs, it has gone through several stages of development, proceeding 

from GRIT to GRIT II and finally to GRIT III in which multi-regional tables can be produced.  

Like many updating methods, there is a reliance on so-called superior data. Superior data is poorly 

defined in the literature, but reading from context it is data that has not been used to produce a national 

table and pertains to production or consumption or trade by region, industry, or sector. It may exist for a 

subset of regions, or a subset of industries, or a subset of sectors of final consumption. An example 

would be a survey about domestic tourism, estimating the amounts of tourism between any two pairs of 

regions. 

The procedure consists of five main steps (where ‘adjustments’ consist of matrix balancing techniques to 

be presented shortly): 

1 Adjustments to the parent table: 

a Select parent IOT 

b Adjust for updating 
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c Adjust for international trade 

2 Adjustments for regional imports: 

a Calculate non-competitive imports 

b Calculate competitive imports 

3 Definition of regional industries: 

a Insert disaggregated superior data 

b Aggregate industries 

c Insert aggregated superior data 

4 Derivation of prototype table: 

a Derive initial transaction values 

b Adjust to derive transaction table 

c Make consistency checks, analysis of sensitivity and coefficient significance. 

d Derive inverses and multipliers. 

5 Derivation of final transactions table: 

a Make final superior data insertions and other adjustments 

b Derive final transactions table 

c Calculate inverses and multipliers for final table. 

The DEBRIOT method, developed in Holland, is the official Dutch method for developing MRIOTs and 

IRIOTs. The name is an acronym of ‘double entry bi-regional input-output tables’ – the approach applies to 

the case of two regions. In practice, one region is much bigger than the other, as the regions will be an 

actual region within a country and the ‘rest of the country’ (see Boomsma and Oosterhaven 1992; Eding et 

al 1999; and Oosterhaven 1981). Based on regional supply and use tables and heavily dependent on 

survey data of one of the regions to understand trade coefficients, the method has the following steps for 

two regions r and s: 

1 Compute 𝑍𝑛𝑟 = [𝑍𝑖𝑗
∙𝑟 − 𝑍𝑖𝑗

𝑟𝑟] for region r and industry j in r. This amounts to apportioning the use of 

products by industry j in r to the various national industries that produce those products. Do this 

for 𝑍𝑛𝑠
 as well. 

2 Compute regional final demand 𝐹𝑛𝑟 = [𝑓𝑖
∙𝑟] as well as 𝐹𝑛𝑠

. 

Estimate the domestic sales matrix for region r, 𝑍𝑟𝑛. The estimation requires the regional sales coefficients 

𝑡𝑖
𝑟𝑠

 which gives the proportion of domestic sales by industry i in region r that is transferred to s. With these 

regional sales coefficients (which in practice are estimated via survey of region r) we can compute the 

regional domestic sales coefficients as a weighted average 

𝑆𝑖𝑗
𝑟𝑛 = 𝑡𝑖

𝑟𝑠
𝑍𝑖𝑗

𝑛𝑠

𝑍𝑖∙
𝑛𝑠 + 𝑓𝑖

𝑛𝑠 + (1 − 𝑡𝑖
𝑟𝑠)

𝑍𝑖𝑗
𝑛𝑟

𝑍𝑖∙
𝑛𝑟 + 𝑓𝑖

𝑛𝑟 
(Equation 4.1) 

 

so we can estimate the entries 𝑍𝑖𝑗
𝑟𝑛 as: 

𝑍𝑖𝑗
𝑟𝑛 = 𝑆𝑖𝑗

𝑟𝑛(𝑥𝑖
𝑟 − 𝑒𝑖

𝑟) (Equation 4.2) 
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1 Construct 𝑍𝑖𝑗
𝑟𝑠  as a constrained mathematical programming problem. 

The procedure is as follows: 

a Preparatory step: Some input-coefficients 𝑍𝑖𝑗
𝑟𝑟

 or 𝑍𝑖𝑗
𝑟𝑠 will be better known than others – label these 

as specified coefficients; the rest are non-specified. 

b Base step: Let 𝑀𝑖𝑗
𝑟𝑟 = min (𝑍𝑖𝑗

𝑛𝑟 , 𝑍𝑖𝑗
𝑟𝑛) and set the constraint 𝑍𝑖𝑗

𝑟𝑟 ≤ 𝑀𝑖𝑗
𝑟𝑟 . This simply states that the total 

input between industries i and j is not bigger than the national input into r nor the national supply 

from r. Observe then that: 

𝑍𝑖𝑗
𝑟𝑠 = 𝑍𝑖𝑗

𝑟𝑛 − 𝑍𝑖𝑗
𝑟𝑟 ≥ 𝑍𝑖𝑗

𝑟𝑛 − 𝑀𝑖𝑗
𝑟𝑟

 
(Equation 4.3) 

𝑍𝑖𝑗
𝑠𝑟 = 𝑧𝑖𝑗

𝑛𝑟 − 𝑧𝑖𝑗
𝑟𝑟 ≥ 𝑧𝑖𝑗

𝑛𝑟 − 𝑀𝑖𝑖
𝑟𝑟

 
(Equation 4.4) 

 

c For the specified entries of the form 𝑧𝑖𝑗
𝑟𝑟  set 𝑧𝑖𝑗

𝑟𝑠 = 𝑧𝑖𝑗
𝑛𝑠 − 𝑧𝑖𝑗

𝑟𝑟
, and analogously if 𝑧𝑖𝑗

𝑟𝑠  is specified. If 

they are both specified, then they may need to be balanced to ensure consistency. 

d For each i and r define: 

ℎ𝑖
𝑟 =

∑ 𝑀𝑖𝑗
𝑟𝑟

𝑗 − (1 − 𝑡𝑖
𝑟𝑠)𝑍𝑖∙

𝑟𝑛

∑ 𝑀𝑖𝑗
𝑟𝑟

𝑗
 

(Equation 4.5) 

 

ℎ𝑖
𝑟
 measures how much the intra-regional trade in i differs from the maximum; ℎ𝑖

𝑟 = 1 corresponds 

to ubiquitous cross-hauling in region r for industry i: all the production (if any) is exported and all 

the input is imported. 

e For each non-specified input-coefficient, set 𝑧𝑖𝑗
𝑟𝑟 = (1 − ℎ𝑖

𝑟)𝑀𝑖𝑗
𝑟𝑟

or 𝑧𝑖𝑗
𝑟𝑠 = 𝑧𝑖𝑗

𝑟𝑛 − (1 − ℎ𝑖
𝑟)𝑀𝑖𝑗

𝑟𝑟
. 

f Finally, set: 

𝑍𝑖𝑗
𝑟𝑠 = 𝑍𝑖𝑗

𝑛𝑟 − 𝑍𝑖𝑗
𝑟𝑟

 (Equation 4.6) 

𝑍𝑖𝑗
𝑠𝑠 = 𝑍𝑖𝑗

𝑛𝑛 − 𝑍𝑖𝑗
𝑟𝑟 − 𝑍𝑖𝑗

𝑟𝑠 − 𝑍𝑖𝑗
𝑠𝑟

 (Equation 4.7) 

 

In subsequent chapters we present a method for finding constraints on amounts of inter-regional trade 

that is analogous to this but which deals with more than two regions. 
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5 Updating and regionalising methods 

Updating and regionalising is the core of the hybrid approach to developing regional IOTs. ‘Updating’ 

refers to transforming an existing matrix of technical coefficients or inter-industry flows to conform to 

data for a different time or a different place. ‘Regionalising’ refers to taking data that exists only at a 

national level and disaggregating it in some fashion to provide regional values. 

There is a possibly surprising amount of controversy in the literature about these methods, particularly 

around the use of location quotients. 

For more details on updating and regionalising methods, beyond what we cover here, see Comer and 

Jackson (1997); Gilchrist and St Louis (1999); Jackson (1998); Jackson et al (2006); Lahr (2001); Madsen 

and Jensen-Butler (1999) and Temurshoev et al (2011). 

5.1 Bi-proportional matrix balancing 

The simplest way to transform a matrix is to scale its columns and rows independently. When the scale is 

chosen so the resulting matrix has prescribed row and column sums, this is referred to as bi-proportional 

matrix balancing. Since the inception of the approach there has been much development of 

generalisations and extensions – in this section we present both the original form and the extensions, 

leading in to possibly the most important idea in this review: the Bayesian information-theoretic approach. 

5.1.1 The RAS method 

To motivate this section, suppose we are presented with a matrix 𝐴 = [𝐴𝑖𝑗] and the problem of finding a 

matrix B, ‘close’ to A, so the row and column sums of B are prescribed. 

That is, there are vectors x and y so Be = x and Bte = y, and we are looking for the solution B - the space of 

which, if B is square of dimension n is of dimension n2 − 2n which is ‘close’ to A. 

The RAS approach begins by supposing there are vectors r and s of dimension n so if we set 𝑅 = Δ(𝑟) and 

𝑆 = Δ(𝑠): 

B = RAS 

The method takes its name from this common naming convention. 

The vectors r and s are solutions to a set of 2n equations in 2n unknowns, and hence if there is a solution it 

is unique. The solution can either be found numerically or, more commonly, using an iterative technique 

in which approximate matrices Bi are produced by alternately scaling the rows or columns of Bi−1 to achieve 

row sums or column sums of x or y, respectively. If a solution does not exist, then the sequence of 

matrices does not converge. 

Bacharach (1970) developed an equivalent formulation that demonstrates the relationship between the 

RAS method and cross-entropy or more accurately the Kullback-Leibler divergence. 

For two probability functions p and q the cross-entropy of p with q is 

𝐼(𝑝, 𝑞) =  − ∑ 𝑝(𝑥)log (𝑞(𝑥))

𝑥

 
(Equation 5.1) 

 

and the Kullback-Leibler divergence of p with q is: 
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𝐾𝐿(𝑝; 𝑞) =  − ∑ 𝑝(𝑥)log 
𝑝(𝑥)

𝑞(𝑥)
𝑥

 
(Equation 5.2) 

 

The Kullback-Leibler divergence of p with q is the difference between the cross-entropy of p and q and the 

entropy of p (which is the cross-entropy of p and p). The Kullback-Leibler divergence is a measure of how 

different p and q are. 

As a heuristic to understand the Kullback-Leibler divergence, we consider the problem of developing an 

efficient code, where frequent events are encoded by short words. Suppose the number of characters 

required to encode an event is linearly related to the logarithm of the frequency of the event. If we have 

two assessments of event frequency (that is, two probability densities p and q), then the relative change in 

code length when coding with p over q is log(p(x)/q(x)). Therefore the Kullback-Leibler divergence is the 

expected extra number of characters needed when coding with p instead of q – it is a measure of 

information change. 

Bacharach’s approach was to observe that when A and B are technical matrices then the entries are 

analogous to probabilities, and so the Kullback-Leibler divergence provides a way to quantify the notion of 

‘nearness’ to A. Thus, finding B amounts to optimising this distance from A under the constraints on the 

row and column sums. This naturally leads to the use of Lagrange multipliers. 

For quantities aij and bij we define a functional: 

ℒ(𝐵) =  − ∑ 𝑏𝑖𝑗 log (
𝑏𝑖𝑗

𝑒𝑎𝑖𝑗

)

𝑖𝑗

+ ∑ 𝜆𝑖 ∑(𝑏𝑖𝑗 − 𝑥𝑖

𝑗

)

𝑖

+ ∑ 𝜎𝑗 ∑(𝑏𝑖𝑗 − 𝑦𝑗)

𝑖𝑗

 
(Equation 5.3) 

 

where λi and σj are Lagrange multipliers, and we want to optimise subject to the constraints that the 𝑖th row 

sums to 𝑥𝑖 and the 𝑖th column sums to 𝑦𝑖.  The symbol 𝑒 denotes the base of the natural logarithm. 

Optimising ℒ, we find that: 

log (
𝑏𝑖𝑗

𝑎𝑖𝑗
) = 𝜆𝑖 + 𝜎𝑗 

(Equation 5.4) 

 

so that if we set 𝑟𝑖 = 𝑒𝜆𝑖 and 𝑠𝑖 = 𝑒𝜎𝑖  we find that 𝑏𝑖𝑗 = 𝑟𝑖𝑎𝑖𝑗𝑠𝑗  just as in the RAS method. Since any solution 

to the RAS method is unique, this solution is identical to the RAS method solution. 

5.1.2 RAS method application 

The application of the RAS method is for the generation of updated technical or inter-industrial transfer 

matrices, or the generation of intra-regional input matrices when one has information about the row and 

column sums. 

For example, if one has a current national technical coefficients matrix and knows the regional 

intermediate inputs and total purchases by industry, then the RAS method can produce an estimate of the 

regional input coefficients. Other combinations work as well: knowing total production, value added and 

final demand, for example. 

Or, if one has an out-of-date national technical coefficients matrix and has updated vectors of 

intermediate input and total purchases then the RAS method can produce an estimate of a current national 

technical coefficient matrix. 

Note that error and uncertainty in either the constraints or the prior technical coefficients can lead to a 

lack of solution under the RAS method. 
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In section 5.2 we will consider extensions to the RAS method that concern situations where there are 

multiple linear constraints on the entries of B, which are possibly ill-defined due to data quality or 

uncertainty in the entries of the prior matrix A. These methods use the what the literature refers to as the 

‘cross-entropy’ approach, though it would be more appropriately named after the Kullback-Leibler 

divergence. 

For more on the RAS method and its application see Byron (1978); Cole (1992); De Mesnard (1997); De 

Mesnard and Miller (2006; Dietzenbacher and Miller (2009); Lenzen et al (2009); Lenzen et al (2012); 

Lenzen et al (2007); Minguez et al (2009); Temurshoev et al (2013); Temurshoev and Timmer 2011); and 

West (1990). 

5.2 Cross-entropy and more matrix balancing 

There are a number of extensions and generalisations to the RAS method, all of which seek to alter an 

existing matrix so the new matrix is both ‘near’ to the original matrix and a number of constraints on the 

matrix entries are met. 

The modified RAS (MRAS) method is applicable to the situation in which in addition to the row and column 

sums of the new matrix being constrained, some set of matrix entries are also constrained. Because RAS 

preserves the cells that are zero, it is straightforward to apply the RAS procedure to the matrix obtained 

by setting the fixed cells equal to zero and afterwards altering the cells to be the required values. 

Of course, setting some matrix entries to be fixed values is an example of a linear constraint. The three-

stage RAS (TRAS) method (Gilchrist and St. Louis 1999; 2004) applies to instances where you want to find 

a matrix B so the entries of B satisfy a collection fi of linear constraints with value ci  – since row and column 

sums are linear functions, this problem formulation includes RAS. Though not introduced in this fashion – 

TRAS was introduced as an algorithm with three steps to it – the approach is to optimise the following 

function: 

∑ 𝑏𝑖𝑗 log (
𝑏𝑖𝑗

𝑒𝑎𝑖𝑗

)

𝑖𝑗

−  ∑ 𝜆𝑘(𝑓𝑘(𝐵) − 𝑐𝑘)

𝑘

 
(Equation 5.5) 

 

When row and column sums are included in the set of constraints, we know any solution will be of the 

form bij = riaijsj with additional constraints on ri and sj. 

Some IOTs have non-positive entries, which leads to a lack of solution for the RAS method. The 

generalised RAS method (Junius and Oosterhaven 2003; Lenzen et al 2007) addresses this situation by 

applying the above optimisation approach to the functional: 

∑|𝑏𝑖𝑗| log (
𝑏𝑖𝑗

𝑒𝑎𝑖𝑗

)

𝑖𝑗

− ∑ 𝜆𝑖𝑓𝑖(𝐵)

𝑖

 
(Equation 5.6) 

 

as you might expect. 

Finally, the konfliktfrei RAS (KRAS) (Lenzen et al 2009) generalises GRAS to cover the situation in which the 

constraints on the matrix entries are in conflict. In this situation, the numerical optimisation of the GRAS 

functional may not converge; the KRAS algorithm is to ‘tweak’ the constraint values ck when convergence is 

stalled. The amount of change depends on how close the current iteration is to meeting the constraints 

and the amount of variance known to exist in the constraint values; thus if the constraint is quite well 

estimated the new constraint will be set to be equal to the value of fk on the current iteration, and if it is 

not well estimated it will be altered by some fixed proportion of the standard deviation. 
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For more on the use of information-theoretic ideas in matrix balancing, see Batten and Martellato 

(1985); Batten (1982); Canning and Wang (2005); Cole (1992); Golan et al (1994); Golan and Maasoumi 

(2008); Macgill (1978); Snickars and Weibull (1977); Wilson (1970). 

5.2.1 The Bayesian approach to matrix balancing 

Recently, all these approaches have been integrated into a single general Bayesian framework (Rodrigues 

2014). The paper is not without error, but the basic results are sound – we have taken some trouble to 

rectify the errors that we noticed. We are going to go into this framework in some detail because it 

presents an approach to developing regional IOTs that allows the use of data from many sources (which 

may themselves be uncertain or unreliable) and provides assessments of the reliability of the final results. 

In the Bayesian statistical paradigm all variables and parameters are random variables. In particular, the 

probability distribution of a random variable is itself a random variable and has its own probability 

distribution. To make this more concrete, consider a random variable with a probability distribution p that 

depends on a set of parameters θ. Then: 

𝑝(𝑥) = ∫ 𝑝(𝑥|𝜃)𝑝(𝜃)𝑑𝜃 (Equation 5.7) 

 

If there exists observations D of the random variable, then the probability distribution p can be updated: 

𝑝(𝑥|𝐷) = ∫ 𝑝(𝑥|𝜃)𝑝(𝜃|𝐷)𝑑𝜃 (Equation 5.8) 

 

The distribution p is the prior for the random variable, and p(x|D) is the posterior. 

Note that by Bayes’ theorem, the posterior for θ is related to the prior for θ by: 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)𝑝(𝜃)

𝑝(𝐷)
 

(Equation 5.9) 

 

This approach allows the estimation of uncertainty in the values of the random variable. 

If we consider the entries of the matrix Z of intermediate inputs as a vector q, then a set of linear 

constraints on the entries of Z translates into a matrix G and a vector c with: 

0 = 𝐺𝒒 + 𝒄 (Equation 5.10) 

 

Note that these constraints imply that the mean m of q satisfies: 

0 =  𝔼(𝐺𝑞) +  𝔼(𝑐) (Equation 5.11) 

 

and with regard to the second moments of q: 

𝐶𝑜𝑣(𝑐) =  𝐺Σ𝐺𝑡
 (Equation 5.12) 

 

where Σ is the covariance matrix of 𝑞. 

In practice, 𝑐 are statistics obtained through survey or administrative data, generally means or sums. 

Though it may not always be the case, we can take 𝑐 to be multivariate normal and hence so is 𝐺𝑞. The 

distribution of multivariate normal random variables is entirely determined by the mean and covariance 

matrix, and hence so is the distribution of 𝑞. 

The essential problem is that the constraints imposed by 𝑐 are not sufficient to determine the distribution 

of 𝑞. Additional constraints must be imposed on the distribution in order to specify it. The heuristic is that 
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the distribution of 𝑞 should not be too different from the distribution of the entries in a previous or known 

matrix of intermediate inputs, where we measure difference using the Kullback-Leibler divergence. 

We suppose we have an observation q0 drawn from a prior distribution π(q) – if q0 is based on survey data 

then π is a multivariate normal distribution or truncated multivariate normal distribution with known mean 

and covariance matrix. The update problem can be reformulated as seeking a probability distribution p(q) 

so: 

• p is ‘close’ to π. 

• the expected value 𝒎 = 𝔼(𝑞) satisfies 𝐺𝒎 + 𝑐̅ = 0, where 𝑐̅ =  𝔼(𝑐)  

• the covariance Σ = 𝐶𝑜𝑣(𝑞, 𝑞) satisfies: 

𝐶𝑜𝑣(𝑐) = 𝐺Σ𝐺𝑡
 (Equation 5.13) 

 

Using the Kullback-Leibler divergence to measure closeness, this amounts to optimising the following 

functional: 

ℒ(𝑝) = 𝑝(𝑞)log ∫ (
𝑝(𝑞)

𝜋(𝑞)
) 𝑑𝑞 + ∑ 𝜆𝑖

𝑖

(∑ 𝐺𝑖𝑗∫ 𝑞𝑗𝑝(𝑞𝑗)𝑑𝑞𝑗 − 𝑐�̅�) + 𝜈(∫ 𝑝(𝑞)𝑑𝑞 − 1) +

𝑗

 
(Equation 5.14) 

∑ 𝜎𝑖𝑗(∑ 𝐺𝑖𝑘𝐺𝑗𝑙∫ 𝑞𝑖𝑞𝑗 (𝑝(𝑞𝑖 , 𝑞𝑗) − 𝑝(𝑞𝑖)𝑝(𝑞𝑗)) 𝑑𝑞𝑖𝑑𝑞𝑗 −  𝐶𝑜𝑣(𝑐𝑖 , 𝑐𝑗))

𝑘𝑙𝑖𝑗

 
(Equation 5.15) 

 

The three additional terms (and associated Lagrange multipliers) concern the mean and covariance of q 

and ensure p is a probability distribution. 

Rodrigues shows that with certain assumptions about Cov(c), certain numerical approaches to finding an 

optimum give the RAS, GRAS, TRAS, and KRAS methods. 

5.3 Techniques used to ‘regionalise’ intermediate inputs, 

technical matrices and estimate trade coefficients 

It is common to have aggregate measures of a quantity, such as industry output at a national level (not 

broken down by region) or household consumption at a regional level (not broken down by industry). The 

problem is to disaggregate the quantity to provide additional granularity. 

The most common and simplest approach is through simple location quotients. In general, a location 

quotient is a set of non-negative weights assigned to regions or pairs of regions and industries. Simple 

location quotients are the most obvious construction. 

Let E be a quantity (such as salary and wages expenditure or FTE workers or gross output). For a region r 

and an industry i let Eir denote the total value of E for the industry i in r; let Ei denote the total value of E for 

the industry i nationally; let Er denote the total value of E for the region r; and let ET denote the total value 

of E across all regions and all industries. Define: 

𝐿𝑄𝑖
𝑟 ≔

𝐸𝑖
𝑟

𝐸𝑟

𝐸𝑇

𝐸𝑖
𝑇 

(Equation 5.16) 

  

Then 𝐿𝑄𝑖
𝑟  measures the relative magnitude (with respect to E) of the industry i in r with respect to the 

industry nationally. If the industry is the same proportion of E in the region as it is nationally then LQri = 1; 

when it is less than 1 the value on the region is under-represented, and over-represented when the value is 

greater than 1. 
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In practice, simple location quotients are used to alter values that are expected to be less than the 

national average. For example, if 𝐴 = [𝐴𝑖𝑗] is a national table of technical coefficients then for a region r we 

can form: 

𝐴𝑖𝑗
𝑟𝑟 =  {

𝐴𝑖𝑗 𝐿𝑄𝑖
𝑟 ≥ 1

𝐴𝑖𝑗𝐿𝑄𝑖
𝑟 𝐿𝑄𝑖

𝑟 ≤ 1
 

(Equation 5.17) 

 

The amount of inputs needed by industry j in region r to produce a unit of production supplied by industry 

i in region r is adjusted according to the relative size of industry i in region r – with size measured 

according to the quantity E. 

If 𝐿𝑄𝑖
𝑟

 is greater than 1 then under the rule all the industry i input for industry j in region r would be met by 

regional production; when it is less than 1 there are domestic imports to the amount of 𝐴𝑖𝑗 − 𝐴𝑖𝑗
𝑟𝑟

 for each 

unit of production. Clearly this does not address cross-hauling. 

There are a number of criticisms to the use of simple location quotients for the estimation of regional 

input coefficients. The technology of simple location quotients has no particular basis in theory, and can 

be sensitive to the choice of quantity E and to statistical variation in the estimates of the various 

aggregations of E; small regions can be poorly estimated. After the regional input coefficients and 

domestic and overseas imports are estimated, the resulting RIOT will in general not be balanced, 

necessitating an application of a RAS-type procedure. 

A result of the approach is that 𝐴𝑖𝑗
𝑟𝑟 ≤ 𝐴𝑖𝑗 for all 𝑖, 𝑗, and 𝑟. This need not be the case, of course, as for some 

industries in some regions the regional supply might be larger than the national average. 

Numerous variations of the location quotient (LQ) method have been developed, but they are generally 

met with similar criticisms. 

• The PLQ (purchases location quotient) method computes a LQ as: 

 

(Equation 5.18) 

 

so that PLQ only makes its comparisons based on industries that use industry i as an input. 

• The cross-industry location quotients CIQ are defined on pairs of industries as follows: 

 

(Equation 5.19) 

 

𝐶𝐼𝑄𝑖𝑗
𝑟
 can be used to estimate regional input coefficients in much the same way as 𝐿𝑄𝑖

𝑟
: 

𝐴𝑖𝑗
𝑟𝑟 =  {

𝐴𝑖𝑗 𝐶𝐼𝑄𝑖𝑗
𝑟 ≥ 1

𝐴𝑖𝑗𝐶𝐼𝑄𝑖𝑗
𝑟 𝐶𝐼𝑄𝑖𝑗

𝑟 ≤ 1
 

(Equation 5.20) 

 

A criticism of this use of CIQ is that 𝐴𝑖𝑖
𝑟𝑟

is always equal to 𝐴𝑖𝑖, as the ‘diagonal’ of CIQ is always 1. Thus, 

a modification is often made to adopt 𝐿𝑄𝑖
𝑟  on the diagonal, which gives: 

𝐴𝑖𝑗
𝑟𝑟 =  {

𝐴𝑖𝑗 𝐶𝐼𝑄𝑖𝑗
𝑟 ≥ 1, 𝑖 ≠ 𝑗, 𝑜𝑟 𝑖 = 𝑗 𝑎𝑛𝑑 𝐿𝑄𝑖

𝑟 ≥ 1 

𝐴𝑖𝑗𝐶𝐼𝑄𝑖𝑗
𝑟 𝐶𝐼𝑄𝑖𝑗

𝑟 ≤ 1, 𝑖 ≠ 𝑗

𝐴𝑖𝑗𝐿𝑄𝑖
𝑟 𝑖 = 𝑗, 𝐿𝑄𝑖

𝑟 < 1 

 

(Equation 5.21) 
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• The semi-logarithmic quotient SLQ due to Round (1978) is an attempt to build a LQ that takes into 

account the size of the buyers, the size of the buying region, and the size of the purchasers. To this 

end we define: 

 

(Equation 5.22) 

 

However, in practice, SLQ has not been seen to provide any advantages over simple or cross-industry 

quotients. 

• The FLQ method due to Flegg et al (1995) is an attempt to modify cross-industry quotients to take into 

account both the buying and purchasing industries as well as the relative size of the region. Define: 

 

(Equation 5.23) 

 

where 0 ≤ δ ≤ 1 is a parameter – in a study using Finnish data it was found that δ ≈ 0.3 [110]. 

• Finally, a further variant is the augmented FLQ AFLQ, which adjusts the FLQ according to the size of 

the buying industry (Flegg and Webber 2000), defined as: 

 

(Equation 5.24) 

 

Note there is not much evidence that AFLQ performs better than FLQ. 

For more information about the construction and use of location quotients (and the occasional controversy 

that surrounds this), see Bakhtiari and Dehghanizadeh (2012); Brand (1997; Chiang (2009); Flegg and 

Tohmo (2013); Flegg et al (1995); Flegg and Webber (1997; 2000); Harris and Liu (1998); Isserman (1977); 

Swanson et al (1999) and Zhao and Choi (2015). 

5.3.1 The supply-demand pool method 

Suppose regional industries produce according to the national technical coefficients table. Then from 

𝑥𝑖
𝑟
and final regional demand 𝑓∙𝑘

∙𝑟
 by demand industry k, we have: 

�̃�𝑟 = ∑ 𝐴𝑖𝑗𝑥𝑗
𝑟

𝑗

+ ∑ 𝐶𝑖𝑘𝑓∙𝑘 
∙𝑟

𝑘

 (Equation 5.25) 

 

where𝐴𝑖𝑗  is the usual national technical coefficient and 𝐶𝑖𝑘  is the demand for industry i output by final 

demand industry k (such as households, central government and the like). The output required �̃�𝑟
 may be 

different from the region’s production 𝑥𝑖
𝑟

 : define the regional commodity balance: 

𝑏𝑖
𝑟 = 𝑥𝑖

𝑟 − �̃�𝑖
𝑟
 (Equation 5.26) 

 

If the balance is positive, there is no evidence the national technical coefficients are not reasonable 

technical coefficients for r – there may indeed be domestic or overseas exports that make up the 

difference. 

However, when the balance is negative there is evidence the national technical coefficients do not provide 

a reasonable estimate for the regional technical coefficients. In this situation, the supply-balance pool 

method is to estimate 𝐴𝑖𝑗
𝑟𝑟

 and 𝐶𝑖𝑗
𝑟𝑟  as follows: 
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𝐴𝑖𝑗
𝑟𝑟 = 𝐴𝑖𝑗

𝑥𝑖
𝑟

�̃�𝑖
𝑟 

(Equation 5.27) 

 

and: 

𝐶𝑖𝑘
𝑟𝑟 = 𝐶𝑖𝑘

𝑥𝑖
𝑟

�̃�𝑖
𝑟 

(Equation 5.28) 

 

With this, we have: 

∑ 𝐴𝑖𝑗
𝑟𝑟𝑥𝑗

𝑟 

𝑗

+ ∑ 𝐶𝑖𝑘
𝑟𝑟𝑓∙𝑘

∙𝑟

𝑘

= ∑ 𝐴𝑖𝑗𝑥𝑖
𝑟

𝑥𝑖
𝑟

�̃�𝑖
𝑟

𝑗

+ ∑ 𝐶𝑖𝑘𝑓∙𝑘
∙𝑟

𝑘

𝑥𝑖
𝑟

�̃�𝑖
𝑟 = �̃�𝑖

𝑟
𝑥𝑖

𝑟

�̃�𝑖
𝑟 = 𝑥𝑖

𝑟
 

(Equation 5.29) 

 

The regional production is now balanced for regional inputs and final demand. 

This is another LQ, with quotient equal to 𝑥𝑖
𝑟/�̃�𝑖

𝑟
. Like most of the other LQ techniques, it does not deal 

with cross-hauling. In particular, its use can only estimate net exports; it is unable to estimate exports and 

imports separately. 

5.3.2 Regional purchase coefficients 

In the DEBRIOT method, use was made of sales coefficients: 𝑡𝑖
𝑟𝑠

 is the proportion of production by industry 

i in region r that is sold to region s. The flip-side is regional purchase coefficients, which provide the 

proportion of inputs into industry i in region r that is met by purchases from region r. 

As we have covered, just as there is a technical matrix at the national level, there will be a technical matrix 

for each region with the country. These technical matrices will in general be different. Input into industry j 

in region r can be sourced within region r or externally, though still domestically. If 𝐴𝑟 = [𝐴𝑖𝑗
𝑟 ] denotes the 

technical coefficients for r then we can write: 

𝐴𝑟 = 𝐴𝑟𝑟 + ∑ 𝐴𝑠𝑟

𝑟≠𝑠 

 
(Equation 5.30) 

 

𝐴𝑟𝑟  is called the matrix of intra-regional input coefficients. 

Under the regional purchase coefficients model, there is a set of coefficients 𝑝𝑖
𝑟
 for each region and 

industry that relate 𝐴𝑟
 and 𝐴𝑟𝑟

 as: 

𝐴𝑟𝑟 =  Δ(𝑝𝑟)𝐴𝑟
 (Equation 5.31) 

 

which is to say Δ(𝑝𝑟) provides a simple estimate of the trade-coefficients. Generally, 𝑝𝑖
𝑟  is defined as: 

𝑝𝑖
𝑟 =

𝑍𝑖∙
𝑟𝑟

𝑍𝑖∙
∙𝑟  

(Equation 5.32) 

 

Thus 𝑝𝑖
𝑟
 is completely determined by 𝑍𝑖

𝑟𝑟
 and 𝑍𝑖∙

∙𝑟
. 

Much effort has been put into estimating these fractions. Results indicate that the use of regional 

purchase coefficients is superior to LQs (Stevens et al 1989). 
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5.3.3 The CHARM method 

The CHARM method stands for Cross-hauling adjusted regionalisation method. It is a variation of the 

supply-demand pool method where an attempt is made to account for cross-hauling, the concurrent 

import and export of the same industrial output. The CHARM method is due to Kronenberg (2009). Flegg 

and Tohmo (2013) evaluated the CHARM method by comparing Finnish RIOTs (which are survey based) to 

those obtained applying the CHARM method to national tables – the CHARM method performed well. 

Cross-hauling can be measured for each industry i as qi where: 

𝑞𝑖 = 𝑒𝑖 + 𝑚𝑖 − |𝑒𝑖 − 𝑚𝑖| (Equation 5.33) 

 

with ei being the exports and mi the imports for the industry (for the moment, we suppress regional 

superscripts, and assume exports and imports includes overseas and domestic destinations and sources). 

Note that qi is always non-negative and bounded above by 2ei = 2mi. If we express vi = ei + mi as the trade 

volume and bi = ei − mi as the trade balance, then we can write vi = |bi| + qi. Note that qi is zero when there are 

no imports or exports and reaches its maximum when exports and imports are equal. For more on cross-

hauling, see Nakano and Nishimura (2013) and Többen and Kronenberg (2015). 

Kronenberg argues cross-hauling is a function of heterogeneity of industry outputs – if output by 

industries was independent of the region of origin then there would be no cross-hauling. To make this 

concrete Kronenburg introduces a variable hi which captures the degree of heterogeneity in the production 

of industry i, (independent of region) and posits that qi is a function of total production, intermediate use, 

final domestic consumption and hi. Moreover, he assumes qi is proportional to hi with form: 

𝑞𝑖 = ℎ𝑖(𝑥𝑖 + 𝑍𝑖∙ + 𝑓𝑖) (Equation 5.34) 

 

This leads to the expression: 

                         ℎ𝑖 =
𝑣𝑖 − |𝑏𝑖|

𝑥𝑖 + 𝑍𝑖∙ + 𝑓𝑖
 

(Equation 5.35) 

 

which can be evaluated using the data present in a national IOT. 

Now choose a region r and an industry i. We assume we have values for 𝑥𝑖
𝑟 , 𝑍𝑖∙

∙𝑟 , and 𝑓𝑖
∙𝑟 . Using these we 

estimate 𝑞𝑖
𝑟  as: 

𝑞𝑖
𝑟 = ℎ𝑖(𝑥𝑖

𝑟 + 𝑍𝑖∙
∙𝑟 + 𝑓𝑖

∙𝑟
 (Equation 5.36) 

 

Then using the supply-demand pool method we obtain estimates for net exports (overseas and inter-

regional) 𝑏𝑖
𝑟
 which together with 𝑞𝑖

𝑟
 gives an estimate for trade volume 𝑣𝑖

𝑟
. Finally, we obtain imports 

(overseas and inter-regional) 𝑚𝑖
𝑟  and exports 𝑒𝑖

𝑟  using mi = (vi − bi)/2 and ei = (vi + bi)/2. 
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6 Estimating regional trade 

As we stated earlier, estimating regional trade is essential for assembling regional IOTs. We have already 

seen some approaches to estimating trade in that the regional purchase coefficients, regional sales 

coefficients are forms of trade coefficients. In this chapter we look at other methods of estimating regional 

trade, focusing in particular on gravity models. 

For further information on estimating regional trade (aside from the gravity model) see Bachmann et al 

(2015); Falocci et al (2009); Giarratani (1980); Isserman (1980); Jiang et al (2010); Park et al (2009) and 

Stadler et al (2014). 

6.1 The gravity model of trade 

A gravity model of trade is a model of the flows of a (set) of goods and services between categories where 

the amount of trade reduces with ‘distance’ between the categories. More precisely, and using the 

notation we have already developed, a gravity model for 𝑍𝑖𝑗
𝑟𝑠 or 𝑍𝑖∙

𝑟𝑠
n its simplest form is: 

𝑍𝑖𝑗
𝑟𝑠 = 𝐺

𝑃𝑟
𝛼1𝑃𝑠

𝛼2

𝑑𝑟𝑠
𝛼3

 

(Equation 6.1) 

 

where α1,α2, and α3 are parameters (exponents) that need to be specified, G is a constant of proportionality 

(which may depend on j or s or r), Pr is a variable that encodes information about the supply of production 

from i in region r and Ps is a variable that encodes information about the demand for production from i in 

industry j in region s, and drs is a notion of distance between r and s – this notion is conceptual and could be 

defined in terms of spatial distance, ease of trade, cost of transport, cultural similarities, length of a 

common border, or some combination of these or others. 

We refer the reader to Byers et al (2000); Evans (2003); Mayer (2014); Sargento et al (2012); Sargento 

(2007) and Sohn (2004). 

Practical application of the gravity model approach requires the practitioner to define variables and 

identify parameters. Generally, there is no data available to identify the parameters analytically – that is, 

fitting the model parameters using actual trade data. Some countries have developed RIOTs using the 

survey approach (Japan and Finland, for example, or using the WIOD) and parameters can be identified by 

using this data to build a gravity model with the desired variables. If these parameters can be modelled in 

terms of quantitative characteristics of the instances providing the data (say, information about the 

countries and its trading partners) one could apply this model in the new context. It is also common in the 

literature to simply select parameters (all equal to 1 is a popular), but this provides a rules-based model 

rather than anything based on data. 

However, even as a rules-based approach it is not entirely without merit as the structure of the gravity 

model does have a theoretical foundation. 

6.2 Theoretical foundations of the gravity model 

In this section we closely follow Costinot and Rodriguez-Clare (2013). 

Suppose we have a set of R regions or countries that each produces a single product, and region i is naturally 

endowed with a quantity Qi of production. These products are substitutable, in that the utility provided by 
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one region’s product can be met to an extent by other regions’ products. We assume the elasticity of 

substitution of one product for another is constant, σ ≥ 0 (though in practice σ will be at least 1). 

We assume each region is represented by a purchasing agent who is seeking to maximise a utility function 

– a constant elasticity of substitution utility function. If Cij is the demand for product i in region j then the 

utility of region j has the form: 

𝐶𝑗 = (∑ (
𝐶𝑖𝑗

𝜓𝑖𝑗
)

𝜎−1
𝜎

𝑖

)

𝜎/(𝜎−1)

 

(Equation 6.2) 

 

where 𝜓𝑖𝑗is a parameter representing the preference that country j has for product i. 

The associated consumer price index is: 

𝑃𝑗 =  (∑ 𝜓𝑖𝑗
1−𝜎𝑃𝑖𝑗

1−𝜎

𝑖

)

1/(1−𝜎)

 

(Equation 6.3) 

 

where Pij is the price of product i in region j. 

Trade between regions is subject to iceberg costs, in which the sale of 1 unit of product i in region j 

requires tij ≥ 1 units of i. Clearly, tii = 1. To avoid arbitrage opportunities Pij = tijPii. 

If Yi is the total income of region i then 𝑃𝑖𝑖 =
𝑌𝑖

𝑄𝑖
 so that: 

𝑃𝑖𝑗 = 𝑡𝑖𝑗

𝑌𝑖

𝑄𝑖
 

(Equation 6.4) 

 

With Xij = CijPij the expenditure by j on product i we can optimise Cj subject to the constraint that ∑ 𝑋𝑖𝑗 = 𝑌𝑖  𝑗 to 

obtain: 

𝑋𝑖𝑗 =  (
𝜓𝑖𝑗𝑃𝑖𝑗

𝑃𝑗
)

1−𝜎

𝐸𝑗 
(Equation 6.5) 

 

where 𝐸𝑗 = ∑ 𝑋𝑖𝑗𝑖  is the total amount of purchases by j. This can be re-written as: 

𝑋𝑖𝑗 = 𝐺
𝐸𝑗𝑄𝑖

𝜎−1

(𝜓𝑖𝑗𝑡𝑖𝑗𝑌𝑖)
𝜎−1 

(Equation 6.6) 

 

where 𝐺 = 𝑃𝑗
𝜎−1

. Thus we see the parameters in the gravity model are related to the elasticity of 

substitution between products, and the distance measure is related to product preference, trade costs and 

the total production of the exporter. 
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7 The regional input-output model: a modelling 

approach to building regional input-output 

tables. 

7.1 The dual nature of regional input-output tables 

An IRIOT is a collection of technical matrices, a trade matrix, a vector of total production, a vector of 

imports, and a decomposition of final consumption into household expenditure, government expenditure, 

capital investment and exports. There is a duality to the technical and trade matrices in that on one hand 

they give, with the vectors of production, imports and consumption, the flows of intermediate outputs 

between industries, providing more nuanced reporting of national production; on the other hand, the 

technical and trade matrices can be thought of as sets of parameters describing the dynamics of 

production and trade.  

We take the approach that unbiased and representative data on regional and industrial supply and use can 

directly inform the entries in the technical and trade matrices, but data that is not representative might be 

used to implicitly improve the accuracy of the estimates by using the technical and trade matrices as 

parameters in models built to explain this data. 

The approach we outline has three steps. The first step (sections 7.2 and 7.3) is to formulate the problem 

of creating an IRIOT as an optimisation problem, extending the Bayesian cross-entropy approach. To 

employ this approach it is necessary to have a set of priors (best guesses) for the quantities to be 

estimated and a set of constraints that are functions of these quantities.  

The second step (section 7.4) is to use data sourced from Statistics NZ or third-party data to develop 

regional technical matrices and to construct constraints on and estimates of the trade matrices.  

The third step (chapter 8) is to model systems for which we have non-representative or biased data in 

terms of these matrices, so using Bayesian methods to fit these models provides a posteriori estimates of 

the trade and technical matrices. We illustrate the third step using accounting data from Xero and, to a 

lesser extent, the freight movement data from eRUC. 

Our presentation will follow this breakdown. In section 7.2 we will present the model formulation in detail. 

Following that we will consider how the necessary priors and constraints might be established using 

available data from Statistics NZ or the third-party sources discussed in chapter 8.  

7.2 Extending the Bayesian approach to estimating 

regional input-output tables 

Consider the most general problem of developing an IRIOT for R regions and N industries. What is 

required is a set of technical matrices, trade matrices, and estimates of final consumption and regional 

sources of that consumption. 

We adapt and extend Rodrigues’s approach to estimate technical coefficients, trade coefficients and trade 

in final consumption. The first step is to formulate the problem as a cross-entropy optimisation problem, 

and following that, to establish priors and constraints using available data.  
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7.2.1 Updating the national technical matrix 

Updating a national technical coefficients matrix requires national data about production and 

consumption. To employ the RAS method or one of its generalisations requires 2𝑁 bits of data, though not 

every set of data with that cardinality will result in a solution – for example if we choose these 2𝑁 points of 

data randomly from the inter-industrial flow matrix (which is otherwise unknown), call them 𝑍𝑖𝑘𝑗𝑘
 𝑘 =

1, … , 𝑁, then the RAS problem in this situation is to find 𝑟𝑖 , 𝑠𝑖 so that: 

𝑍𝑖𝑘𝑗𝑘
= 𝑟𝑖𝑘

𝐴𝑖𝑖𝑗𝑘
𝑠𝑗𝑘

 𝑥𝑗𝑘
 (Equation 7.1) 

 

Clearly for there to be a solution the data points need to have a representative for each row and each 

column of the inter-industrial flow matrix. To employ this formulation, using the technical matrix and the 

vector of outputs, requires knowing the vector of outputs and if that is lacking then one would resort to 

working with the old national table that we are trying to update. 

More generally, if we have 2𝑁 linear constraints on the entries of the inter-industrial flow matrix of the 

form: 

𝑐𝑖 = ∑ 𝐺𝑗𝑘
𝑖 𝑍𝑗𝑘

𝑗𝑘

 
(Equation 7.2) 

 

for some matrix of coefficients 𝐺𝑗𝑘
𝑖

 – when the constraints are simple aggregates and all the entries are 

either 0, 1 or -1.  

If we think of the coefficient matrices 𝐺𝑗𝑘
𝑖

 as vectors of length 𝑁2 then a necessary constraint on the set of 

𝐺𝑖
 is that they be linearly independent; this is not sufficient, however. One can use Macauley’s multivariate 

resultant
3
 to characterise which coefficients lead to RAS solutions for a given national table to be updated. 

Linear independence of the 𝐺𝑖
 requires that within the set of non-zero entries there is complete 

representation of each row and column in 𝑍.  

While 2𝑁 datapoints (or 𝑁 datapoints and the vector of total output) are necessary to pin down a solution 

under the RAS method, the Bayesian cross-entropy approach applies regardless of the number of 

datapoints, whether fewer or greater than 2𝑁 or even greater than 𝑁2
. Obviously, the greater the number 

of consistent data points the more likely the updated table is to resemble the actual table. Fewer than 2𝑁 

datapoints is likely to leave some rows or columns poorly estimated. 

In New Zealand we do not have official data on the total intermediate use of a national industry’s 

production, except for when that information is obtained to produce IOTs. But we can make use of the 

basic use identity: 

(𝐼 − 𝐴)𝒙 = 𝒇 + 𝒆 (Equation 7.3) 

 

where 𝒇 and 𝒆 are the vectors of final consumption and exports, respectively. The basic supply identity 

allows us to constrain 𝐴 in terms of total output, imports, and value added.  

𝒙 = 𝒊𝑻𝐴Δ(𝒙) +  𝒎 + 𝒗 (Equation 7.4) 

                                                   

3
 The resultant of two polynomials is an algebraic notion. It is a polynomial that contains information about the 

intersection of the curves defined by the two polynomials; the polynomials have a common zero if and only if the 

resultant is zero. The resultant is easily computed using the polynomials’ coefficients. Macauley’s multivariate resultant 

is a generalization to polynomials in 𝑛 variables, and has the same property that it is zero if and only if the polynomials 

have a common zero. It is, however, more complex to define and compute, and a precise description is outside the 

scope of this work. 
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By dividing through by total output, these two sets of equations form the set of constraining equations 𝐺. 

Thinking of �̅� as a vector of length (𝑁 + 𝑘)×𝑁 so that: 

𝐺�̅� = 𝒄 (Equation 7.5) 

 

we obtain the familiar constraints on the mean and variance of �̅�: 

𝐺𝔼(�̅�) =  𝔼(𝒄) (Equation 7.6) 

 

and: 

𝐶𝑜𝑣(𝒄) = 𝐺Σ𝐺𝑡
 (Equation 7.7) 

 

𝐶𝑜𝑟(𝑐𝑖 , ∑ 𝐺𝑖𝑗𝑘�̅�𝑗𝑘) = 1, ∀𝑖

𝑗𝑘

 
(Equation 7.8) 

 

In this formulation we are assuming the entries of 𝐺 are not random variables – in practice, this would not 

be strictly true as, because we are adopting �̅� over 𝑍, the entries in 𝐺 are functions of total output 𝒙, which 

will have non-zero variance. Treating 𝐺 as a random vector is best done by Monte Carlo methods rather 

than analytically. 

Thus updating the national table is completely analogous to Rodrigues’s (2014) approach, but modified so 

the technical matrix is sought from the optimisation problem rather than the inter-industrial flow matrix. 

By choosing the augmented technical matrix �̅� to be distributed as Dirichlet, we lose the requirement that 

the density integrate to unity, but otherwise the functional form of the optimisation problem is the same. 

7.2.2 From the national technical matrix to the regional case 

In the regional case, it is appropriate to work with the regional input coefficient matrices 𝐴𝑖𝑗
𝑟𝑠

. If we know 

the regional input coefficient matrices, then we can work out the inter-industry trade matrices and the 

regional technical coefficient matrices. Not all trade is between industries: there is also trade for final 

consumption. In our IRIOT formulation this 𝑓𝑖
𝑟𝑠

. 

To deal with 𝑓𝑖
𝑟𝑠

 we introduce a set of coefficients 𝐶𝑖
𝑟𝑠

, which is the proportion of final consumption of 

industry 𝑖 product in region 𝑠 which is supplied by region 𝑟. Hence: 

𝑓𝑖
𝑟𝑠 = 𝐶𝑖

𝑟𝑠𝑓𝑖
∙𝑠
 (Equation 7.9) 

 

Just as in the problem of updating the national technical matrix, applying the cross-entropy approach 

requires data on regional total output and consumption, and constraints on the probability density of the 

regional input-output matrices.  

One of the issues with regional data is that even when it is available it may be aggregated over industries 

or regions. We will discuss this now, but for the sake of exposition, consider regional technical matrices 

rather than input coefficient matrices. 

Suppose a national technical matrix exists for the period for which the regional estimate is required. 

Updating methods such as RAS require data about production and use at the industry level; often the 

regional data in New Zealand is lacking in granularity – having say fewer industries than the national table 

or aggregating over several regions.  
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Continuing with the notation used previously, we have for a region 𝑟 an (𝑁 + 𝑘)×𝑁 technical matrix  𝐴 ̅𝑟, a 

vector of final production 𝒙𝑟
, and a matrix of intermediate inputs 𝑍∙𝑟

. If 𝐴𝑟
 is the 𝑁×𝑁 submatrix of 𝐴 ̅𝑟 that 

neglects imports and value added, then these quantities are related by: 

𝑍∙𝑟 = 𝐴𝑟𝒙𝑟
 (Equation 7.10) 

 

Now suppose the 𝑁 industries have been classified into 𝐾 collections of industries 𝜎1, … , 𝜎𝐾. There is a 

vector of final production 𝒙𝜎
𝑟
 that we need to use to update the national table to estimate 𝐴𝑟

. Define a 𝑁×𝐾 

matrix 𝜋𝜎
𝑟
 so that: 

𝒙𝑟 = 𝜋𝜎
𝑟 𝒙𝜎

𝑟
 (Equation 7.11) 

 

So that 𝜋𝜎
𝑟  𝑗𝑖 is the proportion of output by industry collection 𝜎𝑗 that was done by industry 𝑗 ∈ 𝜎𝑖. These 

proportions will not be known, but a prior can be constructed. 

Making reference to the previous discussion on regional statistical data, we see that priors on such 

proportions would be needed for the following quantities: 

• value added 

• gross fixed capital formation 

• total outputs. 

Exports and value added can be found at the industrial level both nationally and regionally. Exports in 

goods and services are available at a product level and the national supply tables could be used to 

apportion that to industries. Regional exports could then be apportioned according to regional industrial 

shares of production or through more complex methods. This would be similar for imports. 

New Zealand’s economy is dominated by a few large industries, and priors for the regional supply and use 

by these industries would benefit from directly obtaining pertinent data from the industries, as in the 

National freight demand study (Ministry of Transport 2014). 

7.2.3 Formulating the Bayesian cross-entropy optimisation problem 

The ingredients into the Bayesian cross-entropy optimisation problem are: 

• a prior on the technical coefficients matrices 

• a prior on the trade coefficient matrices 

• a prior on the consumption trade coefficients 

• a prior for each instance in which a regional statistic reports an aggregate of industries 

• a prior for each instance in which an industrial statistic reports an aggregate of regions 

• a prior on each of the estimates of regional foreign imports, regional foreign exports, regional 

household consumption, regional central government consumption, regional local government 

consumption, and regional gross capital formation  

• a set of constraints on values of technical coefficients matrices 

• a set of constraints on the variance of the technical coefficients 

• a set of constraints on the values of the trade coefficients – both industrial and for consumption 

• a set of constraints on the variance of the trade coefficients – both industrial and for consumption. 
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7.2.3.1 Dirichlet distributions and ‘cross-entropy’  

To mimic the notation used in Rodrigues’s (2014) work, let 𝑞, as a vector, denote �̅� and 𝐶. 𝑞 is a 

composite of Dirichlet variables. A prior on 𝑞 is given by a set of parameters �̅� so 𝜋(𝑞) = 𝑝(𝑞 |�̅�).  We want 

to describe a functional that must be optimised, analogous to Rodrigues’s work. To do so we need to 

consider the case of a single Dirichlet random vector. 

What does it mean to be a random vector 𝑋 of dimension 𝑛 that is distributed as Dirichlet? Each entry of 𝑋 

belongs to the open unit interval and the sum of the entries is 1. Being Dirichlet means there is an n-

dimensional vector of positive real numbers 𝜃, so that the probability of 𝑋 taking the values 𝒙 is given by: 

𝑝(𝑋 = 𝑥) = 𝐾(𝜃) ∏ 𝑥𝑖
𝜃𝑖−1

𝑖

 
(Equation 7.12) 

 

Where 𝐾(𝜃) is a normalising constant – it can be given explicitly in terms of Gamma functions. Classically, 

a variable that is Dirichlet describes the likely probabilities for rolling the various faces of an 𝑛-sided die. 

In modelling a column of �̅� as Dirichlet we are assuming the businesses in the corresponding industry are 

obtaining intermediate inputs in proportions obtained by selecting a random die from the Dirichlet 

distribution. 

The Kullback-Liebler divergence between 𝑝(𝑋|�̅�) and 𝑝(𝑋 |𝜃) can be shown to be: 

𝐾𝐿(𝜃, �̅�) = ln (
Γ(𝜃)

Γ(�̅�)
 ∏

Γ(𝜃𝑖)

Γ(�̅�𝑖)
) + ∑(𝜃𝑗 −  �̅�𝑗)𝜓0(𝜃𝑗)

𝑗

− 𝜓0(∑𝜃𝑗) ∑(𝜃𝑖 − �̅�𝑖)

𝑖

 
(Equation 7.13) 

 

where Γ(𝑥) is the Gamma function and 𝜓0 is the digamma function (the logarithmic derivative of the 

Gamma function). 

The expected value of 𝑋 is a vector with entries 𝔼(𝑋𝑖) =
𝜃𝑖

∑𝜃𝑗
 . If we set 𝜃0 = ∑𝜃𝑖 then the covariance of 𝑋𝑖 and 

𝑋𝑗 is given by: 

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗) =  − 
𝜃𝑖𝜃𝑗

𝜃0
2(𝜃0 + 1)

    
(Equation 7.14) 

 

and the variance is: 

𝑉𝑎𝑟(𝑋𝑖) =  
(𝜃0 − 𝜃𝑖)𝜃𝑖

𝜃0
2(𝜃0 + 1)

 
(Equation 7.15) 

 

The point being that the function to be optimised for Kullback-Leibler divergence can be expressed as a 

function of the various Dirichlet parameters for the regional input coefficients and the consumption trade 

coefficients as follows in this special case where we have a single Dirichlet variable. Let 𝒙 be a vector – in 

practice 𝒙 would be obtained from the regional output vectors and the regional consumption vectors. 

ℒ(𝜃) =  ln (
Γ(𝜃0)

Γ(�̅�0)
 ∏

Γ(�̅�𝑖)

Γ(𝜃𝑖)
) + ∑(𝜃𝑗 −  �̅�𝑗)𝜓0(𝜃𝑗) − 𝜓0(𝜃0)(𝜃0 − �̅�0) 

𝑗

+   
(Equation 7.16) 

+∑𝜆𝑖(
𝐺𝑖Δ(𝒙)𝜃

𝜃0
− 𝑐�̅�(𝜃)) + ∑ 𝜎𝑖𝑗(

𝐺𝑖Δ(𝒙)𝜃𝑡𝜃Δ(𝒙)𝐺𝑗
𝑡

𝜃0
2(𝜃0 + 1)

−  𝐶𝑜𝑣(𝑐𝑖(𝜃), 𝑐𝑗(𝜃)

𝑖𝑗

)) 
(Equation 7.17) 

 

Where 𝐺𝑖 is the 𝑖th row of 𝐺 and Δ(𝒙) is the diagonal matrix with entries 𝒙. Due to the presence of the 

dilogarithm function there is no analytical solution, so numerical methods will be required to optimise. 
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7.2.3.2 The fully specified problem 

In our situation, where 𝑞 consists of a number of Dirichlet variables, the functional breaks into sums over 

the components. There are a number (at least 2𝑁𝑅) Dirichlet variables in 𝑞, and let Ι𝑘 denote the set of 

indices that belong to the 𝑘-th variable. Let 𝜃0 be a vector the same dimension as 𝜃 with the entries 

belonging to Ι𝑘 being the sum ∑ 𝜃Ι𝑘
=  𝜃0

𝑘
. Similarly organise �̅� . Let 𝒙 be a vector of the same dimension as 

𝜃 with entries from 𝑥𝑖
𝑟 , 𝑓𝑖

∙𝑟
 or equal to 1 when the corresponding entry in 𝜃 is for a variable that 

disaggregates an aggregated quantity – 𝒙 is a function of 𝜃 because of the disaggregating variables. 

With this, the functional becomes: 

ℒ(𝜃) = ∑ (ln (
Γ(𝜃0

𝑘)

Γ(�̅�𝑘
0)

 ∏
Γ(�̅�𝑖)

Γ(𝜃𝑖)
𝑖∈Ι𝑘

) + ∑(𝜃𝑗 −  �̅�𝑗)𝜓0(𝜃𝑗) − 𝜓0(𝜃0
𝑘)(𝜃0

𝑘 − 𝜃𝑘̅̅ ̅
0) 

𝑗∈Ι𝑘

)

𝑘

   

 

(Equation 7.18) 

                  + ∑

𝑖

𝜆𝑖(𝐺𝑖Δ(𝐱(θ))Δ(𝜃0)−1𝜃 − 𝑐�̅�(𝜃))

+ ∑ 𝜎𝑖𝑗(𝐺𝑖Δ(𝐱(θ))Δ(𝜃0)−1𝜃𝑡𝜃Δ(𝜃0)−1Δ(𝜃0 + 𝟏)−1Δ(𝒙(𝜃))𝐺𝑗
𝑡

𝑖𝑗

− 𝐶𝑜𝑣(𝑐𝑖(𝜃), 𝑐𝑗(𝜃))) 

(Equation 7.19) 

 

Where Δ(𝒙) is the square matrix with 𝒙 on the diagonal, and 𝐺𝑖 is the 𝑖th row of 𝐺. The constraints are 

functions of 𝜃 because of the approach we used to find constraints on the industrial and consumption 

trade matrices, which required the use of the regional technical matrices. 

To make it explicit, the vector 𝑞 consists of the (extended) regional input-coefficients, the trade 

consumption coefficients, the proportions used for creating regional estimates of national statistics, and 

the proportions used for ‘converting’ aggregated statistics to disaggregated statistics – these two last 

components of 𝑞 do not have constraints in the same way as the other components of 𝑞, but appear in the 

optimisation problem in the constraint values 𝑐𝑖(𝜃). 

7.3 Priors and constraints 

7.3.1 A prior on the trade coefficient matrices 

Unlike the technical coefficients there is no national table on which to base a prior for the trade 

coefficients matrices. We propose a prior be set through the use of a gravity model. 

A gravity model could be fitted using Finnish or Japanese RIOTs, or even the WIOD. This would give an 

estimate for the trade coefficients and their variances. This gravity model could be informed by New 

Zealand specific data such as that obtained in the National freight demand study (Ministry of Transport 

2014). 

This prior, together with the national technical coefficients matrix, forms the prior on the set of regional 

input coefficient matrices.   

For the consumption trade coefficients 𝐶𝑖
𝑟𝑠

 we propose a non-informative prior, so that: 

𝔼(𝐶𝑖
𝑟𝑠) =

1

𝑅
 

 

(Equation 7.20) 

for all 𝑟, 𝑖 and 𝑠 (and where 𝑅 is the number of regions). Arguably, a prior that favours consumption of 

local production might be closer to the ‘true’ distribution but the non-informative prior allows the 
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possibility of trade between distant regions, which is entirely plausible with internet commerce. There is 

clearly a lot of scope for setting a prior on consumption trade coefficients, and such a study could benefit 

a lot from courier and postal information, and data about the regions and industries of retail suppliers.  

7.3.2 Constraints on trade coefficient matrices 

The CHARM method can be used to put constraints on the trade coefficient and technical coefficient 

matrices. 

Consider the rest-of-the-world as additional region, 𝑊, so that exports are part of 𝑓𝑖
𝑟∙

, and imports are part 

of 𝑍𝑖∙
∙𝑟
 as 𝑍𝑖∙

𝑊𝑟 = 𝑚𝑖
𝑟
. Suppose that we have regional technical coefficient matrices 𝐴𝑟 . 

The trade balance for industry 𝑖 in region 𝑟, which is the difference between what industry 𝑖 in region 𝑟 

exports and what it imports, is: 

𝑏𝑖
𝑟 = 𝑍𝑖∙

𝑟∙ − 𝑍𝑖∙
∙𝑟 − 𝑚𝑖

𝑟 + 𝑓𝑖
𝑟∙ − 𝑓𝑖

∙𝑟
 (Equation 7.21) 

 

and the trade volume, which is the sum of imports and exports (and hence always non-negative) is: 

𝑣𝑖
𝑟 = 𝑍𝑖∙

𝑟∙ + 𝑍𝑖∙
∙𝑟 − 2𝑍𝑖∙

𝑟𝑟 + 𝑓𝑖
𝑟∙ + 𝑓𝑖

∙𝑟 − 2𝑓𝑖
𝑟𝑟 + 𝑚𝑖

𝑟
 (Equation 7.22) 

 

In the national case (where there are only two regions – the rest of the world and New Zealand) this 

reduces to the usual representation as the difference between exports and imports and the sum of 

imports and exports, as we would expect. 

With these notions, the amount of cross-hauling for industry 𝑖 in region 𝑟 is then: 

𝑞𝑖
𝑟 = 𝑣𝑖

𝑟 − |𝑏𝑖
𝑟| (Equation 7.23) 

  

To apply the CHARM method, we need estimates of the industry’s product homogeneity as used by 

Kronenberg:  

ℎ𝑖
𝑟 =  

𝑞𝑖
𝑟

𝑥𝑖
𝑟 + 𝑍𝑖∙

∙𝑟 + 𝑓𝑖
∙𝑟 

(Equation 7.24) 

 

These measures ℎ𝑖
𝑟
 can be estimated at the national level (so they are the same for each region) either 

using the definition, or by calculating ℎ𝑖 at the product level and using the national supply table to 

produce the measure for an industry as an appropriate weighted average of product-level measures. 

Having estimated ℎ𝑖
𝑟
 we are able to estimate 𝑞𝑖

𝑟
 from total production, total requirements (using the 

regional technical matrix) and regional final consumption. From 𝑞𝑖
𝑟
 and 𝑏𝑖

𝑟
 we can recover 𝑣𝑖

𝑟 .  And finally, 

from 𝑏𝑖
𝑟
 and 𝑣𝑖

𝑟
 we can identify total imports (foreign and domestic) and total exports (foreign and 

domestic) as: 

𝐼𝑖
𝑟 ≔

𝑣𝑖
𝑟 − 𝑏𝑖

𝑟

2
= 𝑍𝑖∙

∙𝑟 − 𝑍𝑖∙
𝑟𝑟 + 𝑓𝑖

∙𝑟 − 𝑓𝑖
𝑟𝑟 + 𝑚𝑖

𝑟
 

(Equation 7.25) 

 

and: 

𝑋𝑖
𝑟 ≔

𝑣𝑖
𝑟 + 𝑏𝑖

𝑟

2
= 𝑍𝑖∙

𝑟∙ − 𝑍𝑖∙
𝑟𝑟 + 𝑓𝑖

𝑟∙ − 𝑓𝑖
𝑟𝑟

 
(Equation 7.26) 

 

We can estimate 𝑍𝑖∙
∙𝑟
, 𝑓𝑖

∙𝑟
 and 𝑚𝑖

𝑟
, which gives 𝑍𝑖

𝑟𝑟 + 𝑓𝑖
𝑟𝑟

. And since 𝑍𝑖∙
𝑟∙ + 𝑓𝑖

𝑟∙ = 𝑥𝑖
𝑟
, for which we have 

estimates, from 𝑋𝑖
𝑟
 we obtain another estimate of 𝑍𝑖∙

𝑟𝑟 +. Following the chain of estimates one sees these 

two estimates are the same. 
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Hence the CHARM method provides constraints on total regional self-supply, conditional on estimates for 

final consumption (including exports), regional imports and regional technical matrices. This gives 

estimates for the regional purchase coefficients: 

𝑝𝑖
𝑟 =

𝑍𝑖∙
𝑟𝑟 + 𝑓𝑖

𝑟𝑟

𝑍𝑖∙
∙𝑟 + 𝑓𝑖

∙𝑟  
(Equation 7.27) 

 

In terms of trade and technical coefficients the constraint on total regional self-supply can be expressed as 

a constraint: 

∑ 𝑇𝑖𝑗
𝑟𝑟𝐴𝑖𝑗

𝑟 𝑥𝑗
𝑟

𝑗

+ 𝐶𝑖
𝑟𝑟𝑓𝑖

∙𝑟
 

(Equation 7.28) 

 

We can repeat this analysis in the situation where we ‘create’ a region as a union of two regions, and 

consider the new situation where the two original regions are discarded and replaced by their union. The 

regional technical matrix for the union of two can be obtained as a weighted sum of the individual 

regional technical matrices by weighting the columns according to the regional output in the appropriate 

industries. The preceding analysis then produces estimates of: 

𝑍𝑖∙
𝑠𝑠′

+ 𝑍𝑖∙
𝑠′𝑠 + 𝑓𝑖

𝑠𝑠′
+ 𝑓𝑖

𝑠′𝑠
 (Equation 7.29) 

 

for any two regions 𝑠 and 𝑠′
. Repeating this, creating artificial regions with three, four, up to 𝑅 − 1 actual 

regions provides 2𝑅 − 2 linear equations in 
𝑅(𝑅−1)

2
 unknowns of the form 𝑍𝑖∙

𝑠𝑠′
+ 𝑍𝑖∙

𝑠′𝑠 + 𝑓𝑖
𝑠𝑠′

+ 𝑓𝑖
𝑠′𝑠

. This data 

could be used to establish means and variances of 𝑍𝑖∙
𝑠𝑠′

+ 𝑍𝑖∙
𝑠′𝑠 + 𝑓𝑖

𝑠𝑠′
+ 𝑓𝑖

𝑠′𝑠
, to be used as constraints for the 

optimisation problem. In terms of the regional input-coefficient matrices the constraint on 𝑍𝑖∙
𝑠𝑠′

+ 𝑍𝑖∙
𝑠′𝑠 +

𝑓𝑖
𝑠𝑠′

+ 𝑓𝑖
𝑠′𝑠

 is a constraint of the form: 

∑(�̅�𝑖𝑗
𝑠𝑠′

𝑥𝑗
𝑠′

+ �̅�𝑖𝑗
𝑠′𝑠 𝑥𝑗

𝑠) + 𝐶𝑖
𝑠𝑠′

𝑓𝑖
∙𝑠′

+ 𝐶𝑖
𝑠′𝑠𝑓𝑖

∙𝑠 = 𝑐 

𝑗

 
(Equation 7.30) 

 

which is a linear equation in �̅� and 𝐶 assuming an estimate of 𝑓𝑖
∙𝑠′

 and 𝑓𝑖
∙𝑠
. The values of 𝑐 depend on the 

values of ℎ𝑖
𝑟
 and the regional technical coefficients, as well as the estimates for 𝑥𝑟 , 𝑓𝑖

∙𝑟 , 𝑚𝑖
𝑟 , and 𝑒𝑖

𝑟
. We 

choose ℎ𝑖
𝑟
 to minimise the variance in 𝑐 while requiring that the ℎ𝑖

𝑟
 combine appropriately to give the 

national value of ℎ𝑖 – without this requirement, the variance in 𝑐 is minimised when ℎ𝑖
𝑟
 is zero for all 

regions 𝑟.  

7.3.3 Proportional estimates in the Bayesian setting 

When creating an estimate of a regional value by pro-rating a national value, we can think of that estimate 

as the mode of a prior on the regional value. Hence, if we estimate the amount of gross capital formation 

in a region as the product of total gross capital formation and the proportion of total production that 

comes from that region, we can think of this as a prior on the vector of capital formation as a proportion 

of total regional output. 

More precisely, if 𝑣 is a vector with an entry for each national industry, and 𝑞 is a vector with an entry for 

each region, we can form for each region 𝑟 the vector: 

𝑣𝑟 = 𝑣 
𝑞𝑟

Σ𝑞𝑠
 

(Equation 7.31) 

 

that is, proportionally scaling 𝑣 according to the relative size of the entries in 𝑞.  Examples of this would be 

in estimating gross capital formation (in which case 𝑣 is national gross capital formation and 𝑞 is the 
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vector of regional output or regional operating surplus or regional consumption of capital plus additive 

change in total output, for example). 

More generally, 𝑞 could be a matrix with a row for each industry and a column for each region, and we 

could form the vector with entries: 

𝑣𝑖
𝑟 = 𝑣𝑖  

𝑞𝑖𝑟

Σ𝑞𝑖𝑠
 

(Equation 7.32) 

 

An example of this would be estimating exports by apportioning the amount of exports by industry 𝑖 in 

region 𝑟 according to the proportion of production by industry 𝑖 done in region 𝑟. 

Regardless of how they are calculated, the vectors 𝑣𝑟
 can be thought of as the product of 𝑣 and a random 

variable that is distributed as Dirichlet. 

7.4 Statistics NZ held data 

A number of sources of regional and industry data are described in Regional statistics at a glance 

(Statistics NZ 2015). These statistics are commonly produced by Statistics NZ and there will be information 

in the Longitudinal Business Database (LBD) and the Linked Employer-Employee Database (LEED) that could 

be used to provide regional or industry data not listed. 

Some data sources provide data at a territorial authority level, which is more granular than regional, but 

the 67 territorial authorities do not each belong to only one of the 16 regions – some territorial authorities 

overlap regions. When using data at a territorial authority level we need to apportion appropriately to the 

various regions and then aggregate. 

Several of the data sources are described as having ‘partial’ regional coverage. In order to protect 

confidentiality or to improve the robustness of the estimates, the data from several regions has been 

combined into one or more ‘virtual’ regions for reporting purposes. In using this data to develop RIOTs we 

are faced with a choice of either using the published data, which presents a technical challenge of 

inferring disaggregated regional information from the aggregated statistics, or return to the source data 

and, where privacy issues allow, extract regional statistics and estimates of their uncertainty. 

In addition to the published data we need the sample standard deviations as well, which are not published 

but surely will be available from Statistics NZ if requested. 

Another recourse to the published data is to assemble data from the LBD. This has the benefit of being 

able to assess the covariances of the various statistics – for example, value added, total output, and even 

exports should be identifiable by region and industry and the businesses that contribute provide the link 

that allows the covariance to be established. 

In the following sections we note which Statistics NZ’s publications might be of use for the various 

pertinent statistics, namely total output, value added, consumption, exports, and imports. Some is 

regional and some is national – we include the national data as it will be useful for updating the national 

technical coefficients. 

7.4.1 Regional production 

Regional GDP estimates are reported for 15 regions (with Tasman and Nelson combined) and 19 industry 

collections (in contrast to the 106 industries used in the national IOTs). These estimates are in producer’s 

prices. The data is produced annually with the year ending in March.  
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Productivity statistics provide annual estimates of the year-on-year percentage change in input and output 

of 28 industry collections. They are useful for updating national tables and identifying imports and 

exports (insomuch that these balance the difference between inputs and outputs and domestic 

consumption). 

National account data on GDP(I) gives operating surplus and salary and wages annually for 55 industry 

groups. It can be used to estimate value added at a national level to update national accounts. 

GDP(P) data gives total output, total inputs and value added for 55 industry groups nationally. 

7.4.2 Regional consumption and final use 

Regional final household consumption can be estimated on a pro-capita basis from the national IOTs, with 

prices updated using CPI data, which is reported semi-regionally as well as nationally. Regional deviations 

from national pro-capita averages can also be taken into account, albeit imperfectly, using survey 

(Household Economic Survey) and census data on income and household spending. 

There is a wealth of information on local and central government finances and expenditure, though the 

published central government data does not identify the location of expenditure nor link the products 

purchased to the industry categories used in the national IOTs. Some work would need to be done to 

carefully assemble the published local and central government finances and expenditure tables into a 

useable framework.  

The LBD and LEED could be used to identify the regional consumption by central government, pro-rating 

the total government purchases (not consumption) according to staffing numbers in the regions. 

Central government consumption could be updated nationally from survey data to reflect changes in 

prices, and apportioned to regions in a manner appropriate to the product consumed - transport 

infrastructure consumption according to where the roads are; education based on where the schools, 

universities and polytechnics are; healthcare and hospitals by capita; residential housing operations 

according to where the state housing is located. This information is available, but needs to be 

systematically collated and made use of. Work in this area has been done, see NZIER (2013).  

National accounts data on GDP(E) gives gross fixed capital formation annually for 55 industry groups, and 

these could be regionalised proportional to regional GDP by industry. 

7.4.3 Regional overseas exports and imports 

Recent work by the author of this report (Holt 2016) could be used to estimate regional exports. The work 

built a model to predict which businesses in the LBD were exporters. When businesses are exporters the 

best estimate for export revenue is the amount of zero-rated GST – this would be in producer’s prices. The 

model was based on grouped economic units, not geographic economic units, so some modification might 

need to be done to employ it for identifying regional exports. Because the model provides a probability of 

any given company being an exporter, when a company’s region is identified in the LBD the expected 

amount of exports the company is responsible for can be calculated and allocated the regional exports for 

the industry the company belongs to. 

Alternatively, exports could simply be apportioned to regions based on the national proportion of the 

industry’s production that occurred in that region, making the assumption that exports are sourced 

uniformly across the locations of production. This is equivalent to using total national exports and 

disaggregating parameters whose prior is set to be proportional to the regional industry’s share of the 

industry’s national GDP – see section 7.2.2 for the sense of this statement. 



Approaches to estimating regional input-output tables 

46 

Different regional industries may need more or less imports as part of their total outputs. The total 

amount of imports by HS10 classification is published regularly by Statistics NZ and hence using the 

supply table one can approximate the amounts of imports by industry – granted, this only covers 

merchandise imports, and a large proportion of imports is consumed or is for capital formation, with the 

industry mix of these imports not specified.  

The following table summarises the use of data (Statistics NZ-held and third party) in setting priors and 

constraints: 

Table 7.1 Data sources for setting priors and constraints 

Parameters Data for setting priors Data for defining constraints 

Regional technical coefficients National IOT, Xero data, Longitudinal 

business frame 

Regional GDP, national accounts, 

productivity statistics. 

Trade coefficients Gravity model, freight demand 

study, eRUC data, Xero data. 

Extended CHARM method 

Consumption trade coefficients Gravity model, freight demand 

study, Marketview data, tourism 

satellite account. 

Extended CHARM method 

Regional disaggregations LBD data, IDI data, census data. Depends on variable being 

disaggregated. 

Industry disaggregations LBD data, LEED data. Depends on variable being 

disaggregated. 

Regional o/s exports Regional GDP, Ports data, LBD data, 

national Supply table. 

Exports data, LBD data. 

Regional o/s imports Gravity model, Ports data. Imports data. 

Regional household consumption Population demographics, income 

survey data, national IOT, CPI data, 

Marketview data, IDI data. 

 

Regional government consumption CPI data, government administrative 

data, IDI data, national IOT. 

Administrative data, Treasury/MBIE 

data. 

Regional gross capital formation National accounts data, regional GDP 

data, productivity statistics, Xero 

data. 

Productivity statistics, LBD data. 
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8 Incorporating third-party data 

The methodology detailed in the preceding section allows data collected as part of the official statistics 

system to maximally inform RIOTs, and to measure where (in terms of inter-regional and inter-industrial 

flows and consumption) the uncertainty lies in the table’s values. More data would allow the uncertainty to 

be reduced, but at additional expense due to the collection and processing costs.  

Third-party data exists and offers the potential to improve the accuracy of the regional input-output 

model. In this chapter we discuss four sets of third party data: Xero data on financial transactions, eRUC 

data on road freight transport movements, Qrious data on cellular telecommunications devices 

movements, and Marketview data on electronic card transactions. 

All four of these datasets are examples of dynamical systems in which objects (money or vehicles or 

devices) change – either in terms of their location, ownership or category. The reason for thinking they 

might inform regional input-output modelling is that the parameters in the regional input output model 

can be thought of as analogous to probabilities: the probability of trade between two regional industries 

or the probability of input from one industry into another. The analogy is not strictly fair as the technical 

coefficients are proportions of monetised input required – so the challenge in making use of many of 

these data sources is to turn probabilities into proportions of monetised inputs, or to only make use of 

the data to improve our understanding of inter-regional trade. 

Unlike survey data, the third-party data is biased and unrepresentative. For this reason, the avenue we 

have pursued is not to try to extract direct estimates of key statistics, but rather to model the data as a 

parametrised stochastic dynamical system in such a way that either: 

1 The parameters include (some subset) of the parameters of the regional input-output model or the 

regional input coefficients, or 

2 The parameters can provide observations of the parameters or the regional input coefficients, so that 

the parameters can be improved by Bayesian update. 

Each of the first two sections that follow have the same basic structure – the third section, on Qrious data, 

is different because of the particular challenge that Qrious data presents. We begin by describing the data, 

its source, what is known about its coverage and issues of bias, and challenges that would need to be 

overcome in terms of data preparation or the restrictions the owner might have on data access. Following 

this, we discuss the dynamics of system described by the data and how those dynamics relate to the 

regional input-output model, if at all. In some cases considerable detail is provided where we believe the 

link is stronger, as with Xero data.  

8.1 Xero data 

Xero is a cloud-based accounting software package that is owned, developed and managed by a company 

of the same name. The product is aimed at small-to-medium enterprises, and offers to simplify the 

accounting process by drawing data directly from the customer’s banks so the customer need only code 

the financial transactions according to their code of accounts and process employee expenses that are not 

present in the bank data. There are additional modules to support invoicing and payroll, but they are not 

core to the product. 

At the time of writing Xero has 200,000 New Zealand customers, though a substantial (but unquantified) 

number of these would be deemed not ‘economically significant’ by Statistics NZ (under $30,000 per 

annum in revenue).  
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In addition to the accounts data, Xero captures the New Zealand Business Number (NZBN) and address 

information. This means that it is possible to link the Xero customers to the information held in the New 

Zealand Companies Register. This holds information on addresses, business type, directors and 

shareholders. And in recent years, new companies have been required to nominate their industry 

classification, but for older businesses this data will be missing. By the end of 2016, Xero is anticipating 

having built a link between their data and the Companies Register data through the NZBN application 

program interface (API). 

The most comprehensive and reliable source of industry classification data is the Accident Compensation 

Corporation (ACC) – with the caveat that businesses might choose to classify themselves in order to 

minimise their ACC levy. Should the Ministry of Business Innovation and Employment (MBIE) integrate the 

Companies Register data with ACC business classification data (or fill the gaps in the industry coding data 

in some other manner) the Xero data could be attributed to industry and region of head-office operation. 

Information about the location of suppliers, buyers and business operations could be inferred from bank 

data even without the coding of financial transactions. Every New Zealand bank account number encodes 

the name of the bank and the branch. If we assume small businesses and people bank locally to their 

place of operations or residence then this allows us to identify where operations are (according to where 

salary and wages or dividends are paid), where suppliers are located (according to where business 

expenses or capital costs are paid), and where customers are located (according to where sales are paid 

from). 

When there are financial transactions between two Xero customers and there is industry classification data 

we obtain data about inter-industry inter-regional flows – either intermediate inputs or final consumption. 

Accurately measuring the retail or wholesale margin is a challenge. (This margin is the gross output by the 

retailer or wholesaler in the input-output framework). A retailer will have a number of different suppliers 

and may have a different margin with each; data on sales will not stipulate the relative quantities coming 

from each supplier. Similarly, for wholesalers. The ‘expenses’ of retailers includes the inputs required to 

‘produce’ retail services and the costs of the goods sold. The inputs into retailing are those that are not 

the costs of goods sold, and the retail margin is the difference between sales and expenses apportioned 

amongst the goods sold. This apportioning is an unknown factor. It is problematic when a retailer fails to 

code their stock purchases as ‘cost of goods sold’ or similar. 

Transportation of goods and services is frequently (but not always) arranged by the seller and charged to 

the buyer as part of the sale price. The default category for freight expenses in Xero does not differentiate 

between transport mode or between freight and courier: it is all ‘freight and courier expenses’. As in retail 

margin, the freight and courier expenses will be a set of financial transactions without any link to the 

purchasers of the goods and their locations – there will be total expenses for freight and courier by region 

and total sales by region, but we will need to infer the appropriate amount of freight and courier expenses 

to subtract from the total sales (along with retail and wholesale expenses) to obtain the actual 

intermediate inputs. This is a different (and harder) problem than for retail or wholesale margins because 

freight costs change with distance between buyer and seller to an unknown degree. In retail and wholesale 

margins it is arguably more reasonable to apportion the cost according to the costs of the goods sold by 

region and industry. 

The coding of financial transactions is very flexible, so it is difficult to systematically identify what product 

or product type a financial transaction concerns. Some common categories such as ‘domestic travel’ 

include transportation, accommodation, and food and beverage costs, or other incidental expenses as 

might be incurred when travelling. To separate this into individual product categories in line with those 
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used in the supply and use tables is not feasible without a large amount of effort involving text mining 

and semantic classification. 

However, the coding is set out to allow the automatic generation of financial statements and IR10 returns, 

and the broad ledger categories of expenses, assets, liabilities, equity and revenue are well defined. 

Transaction codes to expenses should be largely purchases and salaries and wages. Assets is net capital 

formation. Revenue includes sales.  

Understanding exports is problematic. There will be instances where a business sells directly to an 

overseas buyer, in which case the transaction will be GST zero-rated and the transfer of money will be 

from a foreign bank account or an intermediary such as PayPal. But many businesses may not sell directly, 

but instead sell to a wholesaler or retailer who exports and engages in domestic sales. In this situation it 

is not possible to know the actual goods exported if the exporter sells a range of products from a range of 

producing industries. Another issue would be exporters having their overseas sales transferred onto 

foreign credit cards and using these cards to make payments in New Zealand, but this is contrary to tax 

regulations and is unlikely to be widespread. 

The data takes some time to stabilise as accounts are subject to revision up to seven years after tax filing. 

In practice the annual data to the year ending 31 March stabilises after the filing of business income 

taxes. Thus while it might be feasible to use the Xero data to better understand how intermediate inputs 

and final consumption change over a year (say quarterly), it would be inadvisable to use that data until it is 

a year to eighteen months old. 

In summary, the Xero-held data has the potential to provide a lot of information on inter-industrial, inter-

regional flows to (and occasionally from) small-to-medium enterprises. In order to realise this potential, 

the following needs to occur: 

1 The attribution of industry codes to NZBN in the Companies Register needs to be more 

comprehensive. 

2 An assessment needs to be made of how representative the group of Xero customers is in the larger 

group of economically significant companies. For example, what is the distribution of business 

demographic data for the Xero customers in each region so we can compare this to the Statistics NZ 

business demographic data and understand the relative over- and under-representation in the Xero 

data. 

3 It must be feasible to predict what industry the businesses transacting with Xero customers are in, 

making use of the data available: bank account associated to the transaction, ledger codes of 

transactions associated to that bank account, industries commonly associated with the region in which 

the bank branch is located. 

4 There needs to be a sufficient number of Xero customers from each of the wholesale and retail 

industries to provide information about how retailers and wholesalers source and distribute goods. 

Without this it is not possible to use the Xero data to estimate inter-regional, inter-industrial trade. 

8.1.1 A statistical model of Xero data incorporating regional input-output 

matrices 

Because frequently information about industry or region or the nature of the transaction will be missing 

from the Xero data, regardless of how the data is used to inform the development of RIOTs there will be a 

need to impute this missing data, drawing on the power of the information that is present. In this section 

we outline a statistical model for the Xero transactional data. In the following sections we describe two 

ways in which the data (both actual and inferred) could be used for RIOT development. 
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In the model we present, an observation is a financial transaction. Each financial transaction is described 

by data, some of which is available to us and some of which is unknown. The data that describes a 

transaction is as follows: 

1 𝑆𝐼 – the industry code of the seller. 

2 𝑆𝑅 – the region in which the seller operates. 

3 𝐵𝐼 – the industry code of the buyer. 

4 𝐵𝑅 – the region in which the buyer operates. 

5 𝑁 – the nature of the transaction, be it imports, exports, intermediate inputs, household consumption, 

government consumption, gross capital formation, salary and wages, or tax expenses. 

6 𝐴 – the nominal amount of the transaction. 

7 𝑅 – the tax rate of the transaction. 

8 𝑇 – the freight/transport margin of the transaction. 

9 𝑉𝑇 – the transport mode of the freight. 

10 𝑀 – the retail/wholesale margin of the transaction. 

11 𝑉𝑀 – the margin type, either a variety of retail or wholesale. This is an industry category from the 

supply and use tables. 

12 𝐶 – the code of the transaction from the chart of accounts, or the ledger category of the code. 

13 𝑆𝐴 – the address of the seller. 

14 𝐵𝐴 – the address of the buyer. 

15 𝑆𝐵𝐴 – the region of the bank branch of the seller’s bank account. 

16 𝐵𝐵𝐴 – the region of the bank branch of the buyer’s bank account. 

The data we have depends to an extent on whether the buyer or the seller (or both) is a Xero customer, 

and whether information like industry codes are known for every company with an NZBN. We will always 

have the nominal amounts and the tax rate; sometimes we will be certain of the nature of the transaction, 

such as salary and wages or tax expenses. Even these known values can be erroneous due to user error or 

tax non-compliance.  

When we do not have data we need to infer the missing values by leveraging our understanding of how 

these variables co-vary. Figure 8.1 presents a possible causal diagram of the system with observable 

variables appearing in a square and unobservable (latent) variables appearing in a circle. There is a 

directed line from one variable to another when the originating variable has a causal effect on the 

destination variable. 

Thus, from figure 8.1 we can read off the factorisation of the joint probability distribution of the 16 

variables above and the associated aggregates (total expenses, total sales and transportation expenses by 

mode, which might be assessed knowing the proportions of mode use for the supplier industry). A fully 

specified model requires the distributions of these variables to be described, generally in terms of 

standard distributions and parameters (and hyper-parameters in the Bayesian approach). The Bayesian 

approach is then to update the hyper-parameters using the data, while the classical approach would be to 

estimate the parameters by optimisation of the likelihood function or the entropy. 
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The probabilities estimated will be in terms of the frequency in which values occur in the transaction data. 

This is in contrast to the input-output framework where the technical and trade coefficients are 

proportions of total outputs or inputs, respectively, over entire industries or regional industry pairs.  

Consider the trade coefficient 𝑇𝑖𝑗
𝑟𝑠

. By definition, it is the quotient of the amount of input from industry 𝑖 in 

region 𝑟 by the amount of input from industry 𝑖 required by industry 𝑗 in region 𝑠. This input could be a 

direct transfer or it could be through wholesale or retail industries. 

Retail and wholesale industries are service industries through which flows much production and many 

imports. When a purchase is made from a retail or wholesale industry it may comprise goods from a 

number of industries, but we have no direct observations of what these goods may be. This is problematic 

as it obscures the apportionment of supplier to buyer. We stated there needs to be a sufficient number of 

retailers and wholesalers in the Xero customer base so we can attempt to address this by estimating the 

proportions of retail/wholesale sales by regional industry of production. 

Using the model, every transaction, where the supplier is in the retail or wholesale industry and the nature 

of the transaction is ‘sales’, is a collection of ‘virtual transactions’, one for each region-industry pair. We 

will make this more explicit. 

Figure 8.1 Depicts a possible causal structure relating the variables listed above. This causal structure 

translates into a factorisation of the probability density. This factorisation specifies the modelling problem. 
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8.1.2 Virtual transactions 

Fix a transaction where the supplier industry is in the wholesale or retail industry, call it 𝑤. Let 𝑢 be the 

region of the supplying wholesaler/retailer. Because we have assumed there are sufficient Xero customers 

from industry 𝑤 in region 𝑢 (which is unlikely to be the case for large retailers), we can estimate a matrix 

𝐷 that describes how input from regional industries is sourced and dispersed. That is: 

𝐷𝑗𝑠
𝑖𝑟 =  

𝔼(𝐴 − 𝑀 −  𝑇 |𝑆𝐼 = 𝑖, 𝑆𝑅 = 𝑗, 𝐵𝑅 = 𝑢, 𝐵𝐼 = 𝑤, 𝑁 = 𝑁0)

𝔼(𝐴 − 𝑀 − 𝑇 |𝐵𝑅 = 𝑢, 𝐵𝐼 = 𝑤, 𝑁 = 𝑁0)

𝔼(𝐴 − 𝑀 − 𝑇 |𝑆𝐼 = 𝑤, 𝑆𝑅 = 𝑢, 𝐵𝐼 = 𝑗, 𝐵𝑅 = 𝑠, 𝑁 = 𝑁0)

𝔼(𝐴 − 𝑀 − 𝑇|𝑆𝐼 = 𝑤, 𝑆𝑅 = 𝑢, 𝑁 = 𝑁0) 
 

(Equation 

8.1) 

 

With this, if the transaction between (𝑤, 𝑢) and industry-region (𝑖, 𝑟) has input value 𝐴 − 𝑀 − 𝑇 then we can 

replace this transaction with 𝑁𝑅 transactions, one for each region-industry pair (𝑗, 𝑠). The amount of the 

transaction is (𝐴 − 𝑀 − 𝑇)𝐷𝑗𝑠
𝑖𝑟

, and it has zero transport margin and zero retail/wholesale margin. If 𝑗 is 

another wholesale or retail industry, then 𝐷𝑗𝑠
𝑖𝑟

 will need to be replaced with the vector 𝐷𝑘𝑝
𝑗𝑠

𝐷𝑗𝑠
𝑖𝑟

 and the 

entries added to the appropriate entries of 𝐷, repeating as needed for chains of wholesale transactions. 

Similarly, we create virtual transactions for each transaction in which there is a transport margin as 

follows. 

Transportation margins in transactions represent inputs by the appropriate transportation industry into 

the industry of the buyer. The region of operation for the transportation input is information the supplier 

may be privy to, but generally not the buyer. For each industry and pair of regions, we need to estimate 

the mode shares of transport use by suppliers from one industry and region and buyers in another region 

– this is a parameter that specifies the distribution of the variable ‘transport mode’. Lacking information to 

the contrary, as a prior for this parameter we assume the transport mode is independent of the buyer’s 

region – the posteriori distribution may not display this independence, of course. That is, we set a prior 

probability (mean proportion of transport cost for the given mode) for the transport mode 𝑉𝑇 based in 

region 𝑢 as:  

𝑝(𝑉𝑇 , 𝐿𝑇 = 𝑢|𝐵𝑅 = 𝑠, 𝑆𝑅 = 𝑟, 𝑆𝐼 = 𝑖) =  
𝑝(𝑆𝐼 = 𝑁𝑉𝑇

, 𝑆𝑅 = 𝑢|𝐵𝐼 = 𝑖, 𝐵𝑅 = 𝑟)

𝑝(𝑆𝐼 ∈ 𝑁𝑇|𝐵𝐼 = 𝑖, 𝐵𝑅 = 𝑟)

𝔼(𝐴 | 𝐵𝐼 = 𝑖, 𝐵𝑅 = 𝑟, 𝑆𝐼 = 𝑁𝑉𝑇
, 𝑆𝑅 = 𝑢 )

𝔼(𝐴 |𝐵𝐼 = 𝑖, 𝐵𝑅 = 𝑟, 𝑆𝐼 ∈ 𝑁𝑇) 
 

(Equation 

8.2) 

 

where 𝑁𝑉𝑇
 is the transportation industry that provides mode 𝑉𝑇, 𝐿𝑇 is the region in which the transport 

industry is based and 𝑁𝑇 is the set of all transportation (cargo and courier) industries. Again, the 

probabilities in the right-hand-side are in terms of the relative frequency of transactions. 

Thus for a transaction where the buyer is industry-region (𝑖, 𝑟) and the supplier is industry region (𝑗, 𝑠) we 

generate a transaction for each pair (𝑘, 𝑢) where 𝑢 is a region and 𝑘 is a transportation industry, with say 

mode 𝑉𝑇.  This transaction has supplier (𝑘, 𝑢) and buyer (𝑖, 𝑟); the transaction amount is: 

𝑝(𝑉𝑇 , 𝐿𝑇 = 𝑢 |𝐵𝑅 = 𝑟, 𝐵𝐼 = 𝑖, 𝑆𝐼 = 𝑗, 𝑆𝑅 = 𝑠)𝑇 (Equation 8.3) 

 

The transport and retail/wholesale margins for this virtual transaction will be zero by construction. 

8.1.3 Incorporating the trade matrices 

The main intention of describing the model of the Xero data in such detail is to show that the trade and 

technical coefficients can be naturally seen as parameters of the model, so that fitting the model allows 

the hyper-parameters defining the distributions of trade and technical coefficients to be updated. 

If the transactions in the Xero data are fully representative, then the trade coefficients 𝑇𝑖𝑗
𝑟𝑠

 are related to 

some of these quantities as: 
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𝑇𝑖𝑗
𝑟𝑠 = 𝑝( 𝑆𝑅 = 𝑟 |𝑆𝐼 = 𝑖, 𝐵𝐼 = 𝑗, 𝐵𝑅 = 𝑠, 𝑁 = 𝑁0) 

𝔼(𝐴 − 𝑀 − 𝑇 | 𝑆𝐼 = 𝑖, 𝑆𝑅 = 𝑟, 𝐵𝐼 = 𝑗, 𝐵𝑅 = 𝑠, 𝑁 = 𝑁0) 

𝔼(𝐴 − 𝑀 − 𝑇 |𝐵𝐼 = 𝑗, 𝐵𝑅 = 𝑠, 𝑆𝐼 = 𝑖, 𝑁 = 𝑁0)
 

(Equation 8.4) 

 

where 𝑁0 is ‘intermediate inputs’.  

Note with our use of virtual transactions, this is true for transportation, retail and wholesale industries as 

well.  

The probability is the first factor on the right-hand side is in terms of the frequency of transactions, not 

the amount of the transaction. If there is bias in regional representation or where the relative average 

transaction amounts differ greatly from the true average, the trade coefficients will be poorly estimated. 

But if the bias in these senses can be estimated then the transaction coefficients can be adjusted for this 

bias.   

8.1.4 Incorporating the technical coefficients 

Technical coefficients are related to the model components as: 

𝐴𝑖𝑗
𝑟 = 𝑝(𝑆𝐼 = 𝑖 |𝐵𝐼 = 𝑗, 𝐵𝑅 = 𝑟) 

𝔼(𝐴 − 𝑀 − 𝑇 |𝐵𝐼 = 𝑗, 𝑆𝐼 = 𝑖, 𝐵𝑅 = 𝑟) 

𝔼(𝐴 − 𝑀 − 𝑇 |𝐵𝐼 = 𝑗, 𝐵𝑅 = 𝑟)
 

(Equation 8.5) 

  

If the technical coefficients do not change with the size of the business and we have full visibility of all the 

purchases a business makes, the Xero data should conform to the use of inputs as described by the 

technical matrices.  

8.2 Electronic road user charge data 

Taxes to support roads are levied on petrol at the point of sale, but not for diesel as some consumption of 

diesel occurs on private roads, such as farms. Instead of a sales tax on diesel, the road user charge 

system has been adopted, in which operators of diesel-fuelled vehicles buy licences to use their vehicle on 

public roads – these licences cover certain amounts of distance travelled before expiring, and there are 

different licensing costs for different classes of vehicles. 

Several private companies have been given the delegated authority to assess and collect road user charges 

on behalf of the Transport Agency using a system by which a vehicle’s travel is tracked by GPS and the 

appropriate levy automatically calculated. This is the electronic road user charges (eRUC) system, and the 

data collected in the course of operating this system is called the eRUC data. 

It is an ‘opt in’ system – no vehicle operator is obliged to use the eRUC system. The users tend to be large 

fleet operators rather than owner-operators or operators of small fleets. At the time of writing there were 

around 18,000 heavy vehicles taking part in the system, mostly in the North Island. The dataset is growing 

quickly, to the order of millions of new data points every day. 

The system has been in place since 2011, so there are currently five years of data. The eRUC operators are 

obliged to keep their data for seven years. The data is ‘owned’ by the eRUC operators, and it is not known 

what they will do with the data older than seven years. 

Vehicles and trailers in the system are fitted with devices attached to their wheel hubs. These devices 

comprise an odometer, a GPS unit and a cellular telecommunications connection to transmit data to a 

central repository. 
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The frequency at which data is transmitted depends on the vehicle’s movement, capturing when the 

vehicle is at rest and in motion, sufficiently granular to be able to reasonably accurately assess driving 

speeds and the length of periods of inactivity. 

Part of the agreement between the eRUC system operators and the Transport Agency is that the latter has 

agreed to use only aggregated data to preserve the privacy of the freight operators. To this end, the 

Transport Agency has engaged Beca to create tables of data from the raw eRUC data which would be used 

for reporting and analysis. Beca currently owns these tables and is likely to want to be compensated for 

any further use. 

Each datum consists of a time-date stamp, location data and the identification code of the trailer or 

vehicle. The identification code is linked to static information about the trailer or vehicle: the road-user-

charge vehicle class (numbers of axles, weight bearing capacity, whether or not self-propelled, slightly 

different from the standard vehicle classification in the NZ Transport Agency (2013) Economic evaluation 

manual. 

If a vehicle is towing one or more trailers, those trailers may also have eRUC devices and hence will also be 

generating eRUC data.  

To use eRUC data for developing RIOTs it is necessary to identify origins and destinations of vehicle trips, 

volumes or values of cargo being carried, the industries producing the product being carried, and the 

industries owning the destination of cargo. In addition, the bias present in the data due to the eRUC 

system being opt-in needs to be assessed, so adjustments might be made for regions and industries 

whose freight transport needs are more frequently being met by operators not using the eRUC system. 

Making use of the eRUC data will require a deal of data integration and data preparation. The ‘ticker-tape’ 

of vehicle/trailer location data will need to be organised into a form that can be analysed. This might be 

similar to what has been done by Beca. Moreover, the data needs to be integrated with Land Information 

NZ (LINZ) or the regional council rates or the Companies Office data to turn location data into information 

about the industries owning or operating at the locations. Before any modelling can occur, there is 

significant data preparation to be done. 

We take a conceptual view that a powered vehicle in the eRUC system is moving through a sequence of 

distinct ‘states’. These states relate to the vehicle being at or travelling towards a location and what the 

operator is doing while at that location. These states would be: 

1 Travelling between locations 

2 Refuelling or resting 

3 Dropping one or more trailers 

4 Acquiring one or more trailers 

5 Swapping one or more trailers 

6 Unloading a truck or trailer 

7 Loading a truck or trailer. 

The state the vehicle is in depends on the location they are at. Altering a B-train’s configuration of trailers 

would more likely happen at a depot than at the location of a pick-up, for example. We will therefore need 

a probabilistic classification of locations, say into depots, production origins, production destinations, 

refuelling, service or rest areas, domestic air terminals, export air terminals, rail terminals, export 

shipping terminals and domestic shipping terminals. Terminals and depots could be identified directly 
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from a list of addresses of these, or inferred from the number of vehicles present at any time, their 

behaviour and proximity to sources of production or transport infrastructure. 

The state also determines what might happen at the location. If swapping one or more trailers, then the 

vehicle will move serially around the depot with pauses to unhitch and then re-hitch trailers – and the 

identification codes of the trailers travelling proximally to them will change. The state is related to time 

spent at the location, measures of short distances travelled while there, changes in ‘fellow traveller’ eRUC 

identification codes, and the like. 

At any given time, every vehicle and every depot has a mix of cargo in various quantities – with average 

price/volume estimates we can estimates this as values rather than volumes. When a vehicle drops, loads, 

or swaps a trailer at a depot the mix for the vehicle and the depot changes. How it changes is unknown, 

but is informed by the origin and destination of that vehicle and other vehicles using the same depot. 

When the region and industry of destination is known, the regional input coefficients, together with 

national supply and use tables, will provide information about what cargo a vehicle unloading at that 

destination might be carrying. 

To identify what industry produced the cargo being carried we need to deduce what industry is operating 

at the location of a pick-up. This could be done by using the LINZ data or regional council rate data to 

match addresses to find property ownership or property-usage information. 

Over time a vehicle’s location, location type and state change. What region the location is in, when the 

location type is a production destination, depends on the regional input coefficients, the location of the 

production origin, the industries present in the cargo and the industry of final destination. The challenge 

is that the regional input coefficients are assessed annually and there may be seasonality in the state 

transitions. There is sufficient data to include seasonality into the model, so by averaging over a year we 

could obtain measurements – sets of regional input coefficients – that could be used to improve the 

regional input-output models. Moreover, this seasonality could then be integrated into the regional input-

output models to provide seasonal regional input-output models. 

Parameters to the model will include transition probabilities between location types conditional on 

qualities about the vehicle, its cargo, and qualities about the previous location type such as its region; and 

transition probabilities between states, conditional on location types and the activity of the vehicle at each 

location. These transition probabilities, once the model has been fitted, can combine with other parameter 

estimates and estimates of cargo value by industry, to give probabilities of instances of road freight trade 

between regional industries. After adjusting for bias, and other freight transport modes, this could 

improve the estimation of the region-input output model parameters. 

8.3 Qrious data 

Qrious is an entity within Spark Ventures that produces information products based on Spark’s cellular 

telecommunications data.  

Qrious generally makes products – often web-based dashboards – for customers rather than providing 

data. They have a capability to deploy through APIs, but have not done so yet. Some products are 

continually updated as data is collected. 

The data is about the location of cellular devices that are part of the Spark network – this includes foreign, 

roaming users, who can be identified and removed as necessary. Spark has a significant market share – 

numbers are commercially sensitive, but in the order of 45% of the market (biased between household and 

business/corporate use). Over two billion new records are collected every day. 
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Similar to eRUC data, a stream of location data is logged for each device. A datum consists of: 

1 A device id unique to that device, but not identifying the owner 

2 A date-time stamp and location data (coordinates triangulated from the nearest cell-phone towers). 

Qrious will not release information if it would allow the breach of an entity’s privacy. In practice this 

means that the smallest granularity at which they will release data is at the meshblock level. 

Cell phones and other cellular devices tend to be carried by people. Accordingly, the Qrious data is about 

the movement of people, regardless of the transportation mode, in contrast to the eRUC data where the 

data is about the movement of road freight vehicles. But as with the eRUC data the challenge in making 

use of it in an input-output context is to convert these flows into information about trade, consumption 

and intermediate inputs. There is nothing monetary about the Qrious data, and unlike the eRUC data there 

are no simple proxies one can construct from volumes and average price per volume estimates.  

The system is a complex one as it describes people movements in general and not just for a specific 

purpose, such as travelling to provide services. This contrasts with the eRUC data where the purpose is to 

move cargo and seldom would describe a driver’s movements while idly shopping to fill a rainy Saturday 

afternoon. 

There is information about the provision of services in the data, but it would be a significant challenge to 

extract it. Even if a device could be associated to a place of business, and the industry of that business 

identified, there is nothing but circumstantial evidence to link movements of that device to other places of 

business, to the provision of service or the monetary value of that service. And private devices will change 

business associations over time, or people will obtain new devices without concurrent ownership of the 

previous device to allow ‘hand over’ of the data stream. The reader will have no difficulty identifying a 

large number of perfectly normal human behaviours that will make the association of cellular devices to 

the provision of industrial inputs extremely challenging. 

Having said that, it is possible the Qrious data could improve understanding the regional distribution of 

air travel expenditure to industries, to domestic tourism and to household consumption on the borders 

between regions. We note this use of data is different from that of the previous datasets in that we simply 

would try to use Qrious data to estimate regional apportionment of certain inputs, rather than building a 

model that can be related to the regional input-output model. 

To describe this use, we point out some inferences that can be made on the Qrious data; these could be 

used to address some of the listed uses. 

From the basic data one can attempt to infer other information: 

• Devices in common ownership – though this can be problematic in multi-story buildings with multiple 

residents due to an inability to distinguish vertically or due to errors in measuring distances using GPS 

data. Moreover, only likely to be able to detect household ownership, not individual ownership. 

• Frequent location at night – as a proxy for home residence. Again, there are accuracy issues when the 

address is multi-story as the residence within the multi-residence dwelling might not be identifiable. 

• Frequent location during the day – as a proxy for office location. Same issues as for identifying home 

residence. 

• Detection of instances of air travel, identifying origin and destination airports, and surface travel at 

either end of the plane journey.  
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• Detection of frequent air travellers, identifying origin and destination airports, average demographics 

of destination meshblocks, and meshblocks of the traveller’s most common locations in each 

destination and at origin. 

• Assess a meshbock’s ‘roaming radius’: average distance from home residence travelled in any given 

day, by meshblock. 

• Identify whether a business or a personal user of air travel by comparing travel patterns.  

If frequent business travellers can be identified, and their place of business linked to an industry or 

industries (say through a Companies Office API or the Google Maps API), then it would be possible to 

count the number of instances of air flights – ideally the ones estimated as being for business. This could 

be used to estimate the probability of inter-regional service trades, further broken down by the industries 

being serviced as the region of delivery, if we can identify the industries of the businesses that travellers 

spend significant time at. (Note this is problematic in that sales visits will need to be separated from 

service provision visits).  This might inform the aspects of the trade matrices – those related to the inter-

regional trade in services, mostly. 

Transport margins are apportioned to the buyer of services, so after making some assumption about air 

transport margins, we might apportion inputs from air passenger travel to regions or regional industries.  

The identification of the ‘roaming neighbourhood’ of device owners at locations near regional borders 

could be used to improve the estimates of region sources of household consumption, by measuring what 

proportion of the roaming neighbourhood’s retail stores are in the contiguous regions. This is still 

problematic as it does not take into account internet purchases, but that might be addressed to a degree 

by estimating the number of deliveries from courier depots to households and employing an estimate for 

average value by delivery. 

Even if we are able to infer business location, business travel and such, based entirely on circumstantial 

evidence, the problem remains of understanding the bias in the data – is the data more frequently about 

some types of businesses or entities that is warranted as a proportion of the population? Spark may be 

willing to release high-level statistics that show certain demographics of their device holders – such as the 

proportion of accounts owned by businesses, broken down into bands according to the number of phone 

numbers or accounts or devices, which might be a proxy for business size by employee number This is 

information Statistics NZ publishes at a regional level. 

8.4 Marketview data 

Marketview, a subsidiary of the Bank of New Zealand (BNZ), provides information and data about electronic 

card (credit card or EFTPOS) spending. It has been in existence for over 15 years and in that time has 

expanded its data to cover more than just the transactions of BNZ customers: through an association with 

Paymark, a card transaction clearing-house, Marketview has access to 75% of New Zealand card 

transactions covering 80,000 vendors. 

Marketview data is currently used by MBIE and Statistics NZ to measure tourism outputs.  

The BNZ has a 20% share of the credit card market, roughly. It has a similar share of main bank customers 

– the definition of main bank can vary from bank to bank, but generally it is where income is deposited. 

The Paymark data allows the BNZ customer data to be assessed for bias in card spending activity (both 

amounts and vendor categories). Census data is used with BNZ address and date-of-birth data to assess 

bias in spatial location and demographics. Marketview notes on their website that they are under-
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represented in the under 15-year-old demographic; the BNZ requires credit card holders to be at least 18 

and debit card holders to be at least 13.  

The use of Paymark data began in 2007, giving time-series data from 2008. Data is updated daily, so if a 

RIOT was built and improved using Marketview data, it might be possible to see season effects of 

household consumption on regional trade and production. 

Cards are classified as personal credit cards, debit cards, business credit cards and fuel cards. Retail 

spending is that which is done by personal credit and debit cards. Marketview is considering whether to 

develop a statistical model to identify business spending on personal credit cards or debit cards (where 

presumably the person would be subsequently reimbursed by their business). 

Marketview has categorised the Paymark vendors by ANZSIC code – this is primarily focused on retail 

vendors. This coding has not been cross checked with ACC data or other primary sources of ANZSIC data. 

In addition, the vendors’ locations are known and can be reported at the meshblock level.  

Transactions that are reversed are not removed from datasets, an issue Marketview thinks would affect 

only a very small portion of transactions.  

Marketview data does not include direct deposits, hire-purchase, or cash transactions. Hence the value of 

the data is more in household spending than in business spending, and as there is thought to be a bias 

towards cash spending for some demographic groups, some care needs to be taken when using the data 

to estimate regional household consumption. 

Some internet commerce will be captured, provided payment is not made by direct deposit or via PayPal or 

similar credit-card proxy. Credit card payments to PayPal can be identified, and so it is possible to 

estimate the total amounts of internet commerce, but not the location nor industry of the vendor. 

8.4.1 Using Marketview data to estimate regional household consumption 

On the face of it, Marketview data provides estimates at the meshblock level of retail spending by 

households. However, there are gaps in the data: non-card payment transactions are missing; the industry 

and region of the products purchased are unknown and the retail margin is unknown.  

Demographic information about consumer preferences for cash, hire-purchase, or direct deposit against 

card payment methods, needs to be collected so demographic biases to non-card payment methods can 

be accounted for. Once this is done, total regional spending by retail industry category can be estimated. 

This can be used as a set of constraints when building the RIOT – note that it will miss significant 

categories of household consumption such as electricity generation. It also could be used to build a prior 

on regional household consumption of industry output, requiring some assumptions about the relative 

proportions of industry output sold through each retail category. 

As evidenced by the existing application to tourism, the strength of Marketview data is in the consumption 

of accommodation, in that the product is retailed by the producer and generally paid for by credit card. 

Thus, a prior estimated using the Marketview data for the proportion of accommodation supplied by one 

region to another should be quite robust; it could even be treated as a constraint, rather than a prior.   

The data generation process for card transactions data arguably has little to do with trade or production 

technology (with some exceptions, such as trade in retail services). Consumers might prefer some regional 

production over others (such as wine or seafood), but generally products will not be regionally labelled or 

similar enough that any preference would be for parochial reasons and not due to product heterogeneity. 

Thus, a model of the data generation process for Marketview data would not need trade coefficients or 

technical coefficients as parameters. 
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9 Assessing the economic impact of transport 

Transport can affect the economy in a number of ways. There can be a direct impact through capital 

investment in transport infrastructure or through value added by transportation activities; or there can be 

indirect impact through the transportation system facilitating trade, which might affect the efficiency of 

businesses or the competitiveness of markets. 

9.1 The direct impact of the transport industry 

It is a challenge to interpret value added by transportation activity because transportation is generally a 

cost to business. Having a large amount of value added by the transport industry could be an indication 

that the transport industry is inefficient and uncompetitive; or it could be an indication that businesses 

have structured their supply chain so efficiently that transport is an integral part of their operations. As 

manufacturers with complex supply chains increase their production it is conceivable their transport costs 

increase more than other types of inputs, as the costs of other inputs may demonstrate an economy of 

scale, while transport costs scale with volume and distance. In order to evaluate the impact that 

transportation services have on the economy we would need to understand the relationship between 

production efficiency (neglecting transport and retail/wholesale services), the scale of an industry’s 

outputs, and transport costs – thus if the transport expenditure was accountable for a degree of efficiency 

(measured in units of production output per non-transport input) the impact of transport would be the 

difference between the actual production and the expected production without transport input, and less 

the cost of transport in production. 

However, this econometric approach is problematic. Each industry is likely to have its own production 

function and the number of regions is unlikely to give sufficient data points, unless data is available over a 

number of years; New Zealand’s 20 regions are definitely not sufficient. Non-parametric methods such as 

data envelopment analysis could be employed, but are still problematic: in its basic form data 

envelopment analysis is sensitive to outliers and always identifies firms with perfect efficiency, possibly 

reducing the overall distance to the production frontier and thereby reducing the measured impact of 

transport. 

Moreover, the input-output framework does not report on capital. The standard production economics 

view is to consider output as a stochastic function of labour, inputs and capital. Labour costs may vary 

widely or be unreported – this is the case of the WIOD (Dietzenbacher et al 2013). 

We argue that a RIOT is not particularly useful for measuring the impact transport has on the economy as 

a whole, at least not in terms of how much net value added can be attributed to transport. It is possible to 

understand the dynamic of supply and use within the transport industry and the role transport has both 

‘upstream’ and ‘downstream’ in the value-chain. 

Every unit of output by a regional industry is composed of amounts of value added by contributing 

regional industries. Some of these regional industries provide intermediate inputs to the producing 

regional industry, but they need not, instead proving inputs to eventual suppliers to the producer. We say 

that the downstream of a regional industry is all the regional industries that provide value added. 

Similarly, the upstream of a regional industry is the regional industries that receive value added by the 

regional industry in question. It is possible for the total upstream value added per unit of output to be 

greater than one, but the total downstream value added per unit of output is always one (or near to one, 

allowing for the vagaries of data, and including imports). 
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If we interpret a technical matrix as a set of production functions, then downstream describes the creation 

of value added when one more unit of production is consumed, a demand-driven view. The upstream 

describes the increase in value added attributed to an industry when one more unit of production is 

produced by every eventual buyer, a supply-driven view. 

When a regional industry upstream from a given regional industry increases its output, there is a 

corresponding increase in value added attributed to the regional industry in question. In order to produce 

that value added, the regional industry increases its production with a downstream distribution of value 

added. That downstream distribution is accounted for in the downstream value added of the regional 

industry that increased its output. The difference provides a measure of how much value added the given 

regional industry ‘absorbs’ from the upstream regional industry when production is increased. For 

transport industries the smaller this proportion the better.  

In order to calculate this absorption rate we need to decompose output into its components of value 

added, which we do in section 9.1.1. 

9.1.1 Decomposing a unit of output into value added 

We want to consider the value chain for each industry: in production what value is added by which 

industries? Let 𝑉𝑖𝑗
𝑟𝑠

 denote the proportion of output by industry 𝑗 in region 𝑠 that is value added by industry 

𝑖 from region 𝑟. We develop an expression for 𝑉𝑖𝑗
𝑟𝑠

 in terms of the regional inputs matrix and the 

proportion of output that is value added. 

Observe that output 𝑥𝑗
𝑠
 can be written as the sum of purchases, imports and value added (including taxes 

and subsidies): 

𝑥𝑗
𝑠 = 𝑣𝑗
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𝑖𝑟
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𝑠 + ∑ 𝐴𝑖𝑗
𝑟𝑠𝑥𝑗

𝑠

𝑟𝑖

 

(Equation 9.1) 

 

so a unit of output satisfies: 
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(Equation 9.2) 

 

Iterating this, we obtain: 
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(Equation 9.3) 

 

provided the inverse exists.  
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We denote the quotient of value added by outputs as the vector �̅�, and the quotient of imports by output 

as �̅�, and we consider the regional inputs coefficients matrix 𝐴 to be a square matrix indexed by the pairs 

of regions and industries. The inverse exists, by the same argument we presented for the Leontief inverse. 

The entry 𝑉𝑖𝑗
𝑟𝑠

 accounts for how much value added regional industry pair (𝑖, 𝑟) provides to the production of 

(𝑗, 𝑠). This will be through all the instances in the value-chain for (𝑗, 𝑠) where (𝑖, 𝑟) provides inputs – either 

directly or through intermediaries of varying remove. Thus: 

𝑉𝑖𝑗
𝑟𝑠 =  �̅�𝑖

𝑟𝛿𝑖𝑗𝛿𝑟𝑠 + 𝐴𝑖𝑗
𝑟𝑠�̅�𝑖

𝑟 + ∑ 𝐴𝑖𝑘
𝑟𝑢𝐴𝑘𝑗

𝑢𝑠�̅�𝑖
𝑟

𝑢𝑘

+ ⋯ 

= (𝛿𝑖𝑗𝛿𝑟𝑠 + 𝐴𝑖𝑗
𝑟𝑠 + (𝐴2)𝑖𝑗

𝑟𝑠 + ⋯ )�̅�𝑖
𝑟
 

= �̅�𝑖
𝑟(𝐼 − 𝐴)−1

𝑖𝑗

𝑟𝑠
 

(Equation 9.4) 

 

Hence 𝑉 = Δ(v̅)(𝐼 − 𝐴)−1
. From the considerations in the previous paragraphs, we see the column sums of 𝑉 

are the difference between 1 and the total value added by imports to an regional industry. 

Let 𝑖𝑛𝑑𝑇 denote the industries directly associated with transport: land transport, water transport, air 

transport, accommodation and hotels, auxiliary transport activities (such as travel agents).  

Fix an industry-region (𝑖, 𝑟) with 𝑖 ∈ 𝑖𝑛𝑑𝑇. For an industry-region pair (𝑗, 𝑠) we can consider the value added 

by (𝑖, 𝑟) when (𝑗, 𝑠) produces Δ𝑥 more output: 𝑉𝑖𝑗
𝑟𝑠Δ𝑥. In order for (𝑖, 𝑟) to produce this value added it needs 

to produce 
𝑉𝑖𝑗

𝑟𝑠Δ𝑥

𝑉𝑖𝑖
𝑟𝑟  more output, resulting in 

(1−𝑉𝑖𝑖
𝑟𝑟)

𝑉𝑖𝑖
𝑟𝑟 𝑉𝑖𝑗

𝑟𝑠Δ𝑥 value added attributed to the downstream of (𝑖, 𝑟). 

Hence the amount of additional value added not absorbed by (𝑖, 𝑟) is (perhaps unsurprisingly): 

(1 − 𝑉𝑖𝑗
𝑟𝑠)Δ𝑥 −

1 − 𝑉𝑖𝑖
𝑟𝑟

𝑉𝑖𝑖
𝑟𝑟 𝑉𝑖𝑗

𝑟𝑠Δ𝑥 = (1 −
𝑉𝑖𝑗

𝑟𝑠

𝑉𝑖𝑖
𝑟𝑟) Δ𝑥 

(Equation 9.5) 

 

With this we develop an index of regional transport industry efficiency as: 

𝑅𝑖
𝑟 =

∑ (1 −
𝑉𝑖𝑗

𝑟𝑠

𝑉𝑖𝑖
𝑟𝑟) 𝑥𝑗

𝑠
𝑠𝑗

∑ 𝑥𝑘
𝑢

𝑢𝑘
 

(Equation 9.6) 

 

When 𝑅𝑖
𝑟
 is close to 0 (or even negative), there is at least one large regional-industry where (𝑖, 𝑟) is 

absorbing a significant proportion of value added in production – negative would imply (𝑖, 𝑟) has 

significant input costs. When it is close to 1, for all the large regional-industries (𝑖, 𝑟) absorbs very little of 

the value added.  

9.1.2 Example: World Input-Output Database 

We performed the analysis above for the 2013 release of the 2000 WIOD (Dietzenbacher et al 2013) 

available for download at www.wiod.org/database/wiots13. This IRIOT is for 40 countries plus the ‘rest of 

the world’ and has three transport industries: land transport, water transport, and air transport.  

Table 9.1 gives the results of the analysis described in the previous section applied to the WIOD 2000. 

Note that the score is the values of 𝑅𝑖
𝑟
 and the ‘index’ is 1 − 𝑅𝑖

𝑟
 expressed as 10,000

th

s and rounded. 

Table 9.1 Indices of transport industry efficiency (land, water and air transport) for various countries  

Country Land transport 

(score/index) 

Water transport 

(score/index) 

Air transport 

(score/index) 

United States 0.9896/104 0.9990/11 0.9964/36 

Rest of the world 0.9919/82 0.9984/17 0.9990/11 
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Country Land transport 

(score/index) 

Water transport 

(score/index) 

Air transport 

(score/index) 

Japan 0.9929/71 0.9984/16 0.9991/9 

China 0.9962/38 0.9984/16 0.9994/6 

Italy 0.9973/28 0.9998/3 0.9995/5 

Germany 0.9976/24 0.9996/5 0.9993/7 

Great Britain 0.9976/24 0.9998/3 0.9995/5 

India 0.9982/19 0.9999/1 0.9999/1 

Mexico 0.9984/16 0.9999/1 0.9999/2 

France 0.9985/16 0.9998/2 0.9997/4 

Spain 0.9988/12 0.9999/1 0.9998/3 

Canada 0.9988/12 0.9999/1 0.9997/4 

Turkey 0.9990/11 0.9999/2 0.9999/1 

Brazil 0.9990/11 0.9999/1 0.9999/2 

Russia 0.9990/10 0.9999/1 0.9999/2 

Australia 0.9993/8 0.9999/1 0.9997/3 

South Korea 0.9993/7 0.9994/7 0.9997/3 

Sweden 0.9994/6 0.9999/2 0.9999/2 

Netherlands 0.9995/6 0.9998/2 0.9997/3 

Denmark 0.9997/3 0.9995/6 0.9999/1 

Belgium 0.9995/6 0.9999/1 0.9998/3 

Poland 0.9996/4 0.9999/1 0.9999/1 

Austria 0.9996/4 0.9999/1 0.9999/1 

Taiwan 0.9997/3 0.9998/3 0.9998/2 

Greece 0.9999/1 0.9997/3 0.9999/1 

Finland 0.9997/3 0.9999/1 0.9999/1 

Slovakia 0.9999/2 0.9999/1 0.9999/1 

Romania 0.9999/2 0.9999/1 0.9999/1 

Portugal 0.9999/2 0.9999/1 0.9999/1 

Ireland 0.9999/2 0.9999/1 0.9999/2 

Indonesia 0.9999/2 0.9999/2 0.9999/1 

Hungary 0.9999/2 0.9999/1 0.9999/1 

Czech Republic 0.9999/2 0.9999/1 0.9999/1 

Slovenia 0.9999/1 0.9999/1 0.9999/1 

Malta 0.9999/1 0.9999/1 0.9999/1 

Latvia 0.9999/1 0.9999/1 0.9999/1 

Luxemburg 0.9999/1 0.9999/1 0.9999/1 

Estonia 0.9999/1 0.9999/1 0.9999/1 

Cyprus 0.9999/1 0.9999/1 0.9999/1 

Bulgaria 0.9999/1 0.9999/1 0.9999/1 
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We observe that land transportation absorbs the most value added under a uniform expansion of global 

GDP and, in particular, United States land transportation absorbs 1.04% of global value added (US$328b of 

US$31.6t reported in the WIOD 2000 table), far and away the largest of all transportation industries. Most 

transportation industries provide value added to their own country’s industries, so this degree of impact is 

likely due to the size of US production as a proportion of global production.  

India and Italy have index values that are not commensurate with the amount of output they produced in 

2000. We conjecture that industries in India and Italy would be more competitive as suppliers (both 

domestically and abroad) if they improved the efficiency of road transportation. 

Finally, we observe that with the exception of the United States, air transport absorbs very little value 

added. This is due to the very large size of the United States’ financial services and ‘rental of materials and 

equipment and other business activities’ industries, which both use a large amount of air transport inputs. 

This latter industry includes consulting services, software licensing, intellectual property services and 

other professional services. 

9.2 Transport industry inter-dependencies 

Transport industries do not exist in isolation from other transport industries. Land, water and air transport 

are inter-dependent (and depend on other industries such as transport services, fuel, transport 

equipment). How this is expressed in terms of regional dependencies is the subject of this section. 

Having decomposed value added as above, we restrict our attention to value added provided by transport 

industries to other transport industries, by region. Many regions and transport industries may be 

essentially independent of other transport industries in other regions, but the business model for others 

may be different – they may tranship cargo to other regions and pay the transport industries in those 

regions directly for this; they may hire transport equipment from other regions to suit their needs; they 

may outsource their transport needs by contracting to other regions’ transport businesses. (These 

transport industries are distinct from ‘auxiliary transport services’, transport equipment manufacturing, 

transport equipment repairs, or fuel and energy for transport.) Thus, if a region wishes to expand its 

transportation industry production while maintaining its current business model, it is useful to know 

which contributing regions and industries would also need to be developed, either through investments in 

capital or through bolstering labour inputs. 

Figure 9.1 shows the situation for a number of countries’ transport industries from the 2000 WIOD. This is 

a directed graph whose vertices are some transport industries in a number of countries. There is an edge 

beginning at a country’s industry (the ‘origin’ of the edge) and ending at another country’s industry (the 

‘destination’ of the edge); the origin must provide at least 1% of the value added in a unit of production by 

the destination. The numbers labelling the edges are the percentages of value added the origin country’s 

industry is contributing to the production by the destination. We have suppressed the percentage of value 

added stemming from each industry’s own production.  

The label ‘land’ means land transportation; the label ‘water’ means water transport; and ‘air’ means air 

transport.  

From this graph, we can conclude water transport in Denmark is very enmeshed with Swedish land 

transport (10% of value added); Swedish water transport is dependent on Swedish land transport (5%) and 

British water transport (2.2%); etc.  
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Figure 9.1 Flows of value added between some transport industries in various European countries 

 

9.3 Indirect impacts of transport: regional importance 

Inputs into industries are combinations of goods and services sourced from different regions and 

industries. A region could be considered important to a regional industry if much of its downstream value 

added is routed through the region; policy targeted at regional development would be advised to ensure 

transportation industries in regions of importance are capable of supporting increased trade. This section 

looks at how RIOTs can be used to measure such regional importance. 

The amount of eventual input from industry-region (𝑖, 𝑟) into industry-region (𝑗, 𝑠) that routed directly 

through a region 𝑢 is ∑ 𝐴𝑖𝑘
𝑟𝑢𝐴𝑘𝑗

𝑢𝑠
𝑘  (assuming 𝑢 is not 𝑟 or 𝑠). Allowing more indirect routes, we introduce the 

notation: 

𝑇𝑖𝑗
𝑟𝑠(𝑢; 𝑛, 𝑚) = ∑(𝐴𝑛)𝑖𝑘

𝑟𝑢(𝐴𝑚)𝑘𝑗
𝑢𝑠

𝑘

 
(Equation 9.7) 

 

for non-negative integers 𝑛 and 𝑚 so 𝑛 + 𝑚 > 0. Thus, the amount of value added contributed to a unit of 

production by (𝑗, 𝑠) via a region 𝑢 is the sum: 

𝐼𝑗
𝑠(𝑢) = ∑ �̅�𝑖

𝑟

𝑛,𝑚,𝑟,𝑖

𝑇𝑖𝑗
𝑟𝑠(𝑢; 𝑛, 𝑚) (Equation 9.8) 
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The value added flowing through one region can also flow through another, so this measure does not 

provide a decomposition of value added. 

This measure can be used to assess the importance of one region to another: 

𝐼𝑠(𝑢) =
∑ 𝐼𝑗

𝑠(𝑢)𝑥𝑗
𝑠

𝑗

∑ 𝐼𝑗
𝑠(𝑢)𝑗𝑢 𝑥𝑗

𝑠 
(Equation 9.9) 

 

We weighted the importance of the region to each regional industry by the amount of output by the 

regional industry, so the measure of importance of one region to another is affected more by high output 

industries in the purchasing region. Price changes can affect this measure of importance, so the 

importance is sensitive to relative volumes and relative prices. 

If trade volumes are of interest, then we have a symmetric measure of importance as: 

𝐼(𝑟, 𝑠) = 𝐼𝑟(𝑠) + 𝐼𝑠(𝑟) (Equation 9.10) 

 

In practice, the most important region for a region is itself, but that will fluctuate greatly according to how 

able a region is to meet its own input needs; smaller regions or regions that specialise in a few industries 

see a greater reliance on imports from other regions. 

This set of pair-wise estimates of inter-regional flows can also be used to identify trading blocs by 

constructing a directed (network) graph and employing community detection (vertex clustering) 

techniques. 

9.3.1 Example: Importance between trading nations, using the World Input-

Output Database. 

In tables 9.2 to 9.5 we present for several countries represented in the 2000 WIOD, all the countries 

through which at least 1% of value added flows. The countries are Australia, Cyprus, the USA and China. 

In interpreting these tables it is important to remember these assessments of mutual importance are 

made in respect of intermediate inputs, not in terms of final consumption. Therefore, these links are 

about the infrastructure of business-to-business trade: transport infrastructure, shared standards, audit 

practice, customs clearance, tort and contract law, etc.  

Table 9.2 Estimates of value-added flow volumes between various economies and Australia – those 

economies that have value-added flow volume at least 1% 

Value-added flow volume between…  and… 

China 1.5% Australia 

Great Britain 1.2% 

Indonesia 2.2% 

Japan 1.6% 

Korea 1.8% 

Rest of world 4.4% 

Taiwan 1.8% 

USA 2.7% 

 

Thus, Australia would benefit (assuming efficiency savings were passed on) if the USA were to improve the 

efficiency of its land transport network. 
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Cyprus illustrates how a small region will have more significant trading conduits. 

Table 9.3 Estimates of value-added flow volumes between various countries and Cyprus – those economies 

that have value-added flow volume at least 1%  

Value-added flow volume between… and… 

Belgium 1.1% Cyprus 

China 1% 

Germany 2.9% 

France 1.7% 

Great Britain 2.5% 

Greece 2.5% 

Italy 3% 

Japan 1.3% 

Netherlands 1.2% 

Rest of world 6.8% 

Russia 4.8% 

USA 3.2% 

 

The USA has relatively few suppliers of value added, but supplies value added to a large number of 

countries. Note that when the value-added flow is high it is generally because the USA is providing a lot of 

value added to the production of the trading partner. In the case of Ireland, it would be interesting to 

understand the nature of the high flow-volume – it might be attributable to transfer payments by US 

technology firms to Irish subsidiaries as part of tax planning. 

Table 9.4 Value-added flow volumes between selected economies and the United States – those economies 

with value-added flow volumes at least 1% 

Value-added flow volume between… and… 

Australia 2.7% United States 

Austria 1.9% 

Belgium 4.0% 

Brazil 2.4% 

Canada 16.6% 

China 1.9% 

Cyprus 3.2% 

Czech Republic 2.8% 

Germany 2.8% 

Denmark 2.1% 

Spain 1.6% 

Estonia 2.3% 

Finland 3.1% 

France 2.8% 

Great Britain 3.7% 

Greece 3.9% 
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Value-added flow volume between… and… 

Hungary 3.3% 

Indonesia 2.3% 

India 1.4% 

Ireland 10.8% 

Italy 2.1% 

Japan 2.4% 

South Korea 4.5% 

Lithuania 1.5% 

Luxemburg 3.6% 

Latvia 1.5% 

Mexico 18% 

Malta 6.7% 

Netherlands 4.3% 

Poland 1.4% 

Portugal 1.5% 

Romania 1.4% 

Rest of world 9.9% 

Russia 1.5% 

Slovakia 1.4% 

Slovenia 1.5% 

Sweden 3.8% 

Turkey  1.5% 

Taiwan 5% 

 

In 2000, China was not nearly as active in global value-chains, focusing on its neighbours in South-East 

Asia. 

Table 9.5 Value-added flow volumes between various countries and China – those economies that have value-

added flow volume at least 1% 

Value-added flow volume between…  and… 

Australia 1.5% China 

Canada 1.2% 

Cyprus 1% 

Germany 1.2% 

Estonia 1.1% 

Great Britain 1.1% 

Hungary 1.1% 

Indonesia 2.2% 

India 1.1% 

Ireland 1.1% 

Japan 3.1% 
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Value-added flow volume between…  and… 

Korea 3.7% 

Malta 1.2% 

Netherlands 1.9% 

Rest of world 5% 

Taiwan 3.5% 

USA 1.9% 

 

9.3.2 Global value-chains in 2000 

Form a graph which has the countries in the WIOD as vertices, and where there is an edge between 

country 𝑟 and country 𝑠 provided 𝐼𝑠(𝑟) is greater than 0.01 – this is an arbitrary cut-off, of course. This is a 

directed graph that illustrates the importance of transport and trade facilitation in value chains. Transfers 

between countries to meet final consumption demand is not present in this graph – this is just business-

to-business transfers. Thus a country that imports little for its production and whose exports are primarily 

for consumption will only have a few incoming edges and no outgoing edges. 

A community in a graph is a clustering of vertices, otherwise called a vertex labelling. Heuristically, a 

vertex is assigned to a community when it is more connected to fellow community members than to 

vertices in different communities. The modularity of a vertex labelled graph provides a measure of that 

heuristic. Too many communities and vertices and the modularity will penalise a vertex labelling for not 

placing highly connected vertices in the same community; too few communities and the modularity will 

penalise a vertex labelling by not separating two vertices that have few connections in common. By 

optimising the modularity it is possible to detect a community structure, though this is not the only 

manner in which communities can be algorithmically created. 

The graph of countries from the 2000 WIOD is small and it is quite feasible to directly optimise the 

modularity, producing figure 9.2. There are four communities. 
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Figure 9.2 Depicting the importance of one economy to another in supporting production 

  

The reader should not read too much into the placement of the vertices – there is no vertical or horizontal 

scale, but simply points in space. The thickness of the lines between two countries increases with the 

proportion of value added transferred from the source to the target.  
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10 Conclusions 

The purpose of this work was to create a methodology for developing regional input-output tables that 

made best use of the data available, both official statistical data and third-party data; and to investigate 

how a regional input-output table could be used to understand the economic impact of transport. The 

work achieved all these objectives. 

The methodology we developed was largely an extension of the Bayesian approach of Rodrigues, but with 

some novelty. Rodrigues demonstrated how to reformulate the various matrix update methods (RAS, KRAS 

and the like)  as a Bayesian optimisation problem. In such a problem, the unknown quantity (in this case a 

matrix) is considered to be a random vector whose distribution of values is affected by a set of constraints 

and knowledge of the uncertainty in the measurement of these constraints. We extended Rodrigues’s 

approach to regional input-output tables and incorporated not just the constraints that produce the matrix 

update methods but also: 

• constraints on regional trade (through an extension of the CHARM method) 

• information such as location quotients or subject-matter expertise to inform priors and allowing the 

uncertainty of such ad hoc methods to be included in the uncertainty of the table’s values. 

This approach integrates all the known approaches into a single framework, and the assessments of table 

uncertainty provide intelligence on how additional data might best improve a table for a particular 

purpose. 

The main components of a regional input-output table describe a dynamic of monetary transfer between 

regional industries and other regional industries or final use. Real-life data (as opposed to statistical data 

obtained from surveys) can be modelled in terms of a data-generation process. Such a model will have 

parameters that are fitted to the data as part of building the model; in a Bayesian setting you would start 

with priors on the parameters and use the data to update the priors. When you can include regional input-

output table data as parameters in a data-generation model you can use the real-life data to update the 

regional input-output table. 

We evaluated a number of sources of data for this purpose: eRUC, Marketview, Qrious, and Xero, Only 

Xero and Marketview are likely to be of any use for the data-generation model approach to informing 

regional input-output models, as they are the only data sources that are inherently monetary in nature 

(eRUC and Qrious are essentially location data); of these two, Xero shows the most promise for updating 

the dynamics of regional input-output, though Marketview would be extremely useful for establishing 

priors for final use or constraints on regional tourism (as is already done). 

In input-output accounting transport is a cost to the purchaser. As such, it is difficult to use regional 

input-output tables to evaluate the impact of transport on the economy – perhaps with a time series of 

tables one could employ production efficiency techniques to such an end, but we considered only what 

can be measured from a single table. We developed three measures of impact: 

1 The efficiency of a regional transport industry can be measured in terms of how much value added it 

provides as a proportion of the output of the purchasing industries. In this measure, large amounts 

would be interpreted as inefficiency, though it is likely this measure is very coarse. 

2 Transport industry inter-dependencies can be quantified using regional input-output tables to 

understand how air, sea and road transport cooperates to deliver regional transport. This is not an 

absolute measure of impact, but a measure of the impact one regional transport industry has on 

another regional transport industry. 
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3 The use of transport is in the movement of people and things. Thus an indirect impact is in how 

transport facilitates trade. We measure the importance of a region to another region in terms of how 

much value added flows through a region into another region’s production. Transport or value-chain 

links between a region and another regional of high importance should be prioritised, so this measure 

provides a quantification of importance that informs resource allocation. 

We generally conclude it is not feasible to measure the direct economic impact of transport using a single 

regional input-output table, though indirect effects can be measured and would provide useful input into 

transport planning at a regional level.
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Appendix A: Glossary 

ACC  Accident Compensation Corporation 

API  application programming interface 

BNZ  Bank of New Zealand 

CHARM  cross-hauling adjusted regionalisation method 

CPI  consumer price index 

FTE  full-time equivalent employee 

GDP  gross domestic product 

GDP(E)  gross domestic product using the expenditure method 

GRIT 

(method) generation of regional input-output tables 

IOT  input-output table 

LBD  Longitudinal Business Database 

LEED  Linked Employer Employee Database 

LINZ  Land Information New Zealand 

LQ  location quotient 

MBIE  Ministry of Business Innovation and Employment 

MRIOT  multi-region input-output table 

NZBN  New Zealand Business Number 

NZIER  New Zealand Institute of Economic Research 

Prior  Used in Bayesian statistics. A probability distribution or function that is updated to

  produce a posterior using Bayes’ theorem and data. Heuristically, a prior can be thought 

  as a ‘best guess’ for how a random variable should be distributed prior to having data. 

RIOT  regional input-output table 

Transport 

Agency  New Zealand Transport Agency 

WIOD  World Input-Output Database 


