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ABSTRACT 

The New Mexico Legislative Lottery Scholarship is a broad, “low-bar,” state lottery-funded 

scholarship designed to increase access to higher education on behalf of New Mexico residents.  

The natural experiment of a state lottery scholarship is used to measure the effect of generous 

financial aid on major choice at New Mexico’s flagship public university.  A potential 

unintended consequence of state merit aid scholarships is to discourage the production of human 

capital in science, technology, engineering, and mathematics (STEM) fields.  This may occur if 

students avoid more rigorous majors in order to increase the likelihood of scholarship retention.  

I find no evidence that the scholarship decreased the overall likelihood that a student first 

declares a STEM major or earns a STEM degree.  There are significant effects when 

disaggregating by academic preparation: less-academically prepared entering freshmen are 6.8 

percentage points (40 percent) less likely to initially declare a STEM major, while more-

academically prepared entering freshmen are 12.1 percentage points (44.3 percent) more likely to 

initially declare a STEM major.  No significant effects are found when examining whether a 

STEM degree was earned.  Evidence suggests these effects are at least in-part due to 

compositional changes in the student body before and after the advent of the lottery scholarship. 
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1.  INTRODUCTION 

 The introduction of broad, merit-based college scholarships in the 1990s created a natural 

experiment for measuring relationships between college costs and academic outcomes.  State 

merit-based scholarships generally fund most if not all tuition for qualified resident students.  

State legislation establishing merit-based scholarships share several common goals: retaining 

talent in-state, increasing access to higher education by reducing financial burdens, and 

promoting timely completion.  There is considerable variation in initial and continuing eligibility 

requirements across states.  Researchers have cataloged how such programs affect enrollment 

and course taking behavior, and, more recently, degree completion.  I analyze the effect of the 

New Mexico Legislative Lottery Scholarship (NMLLS), a uniquely “low-bar” merit-based 

scholarship, on student major choice.  Specifically, this paper is interested in two related research 

questions.  First, do generous, low-bar merit scholarships discourage students from choosing 

majors in science, technology, engineering, and mathematics (STEM)?  Second, do such 

scholarships affect the number of STEM degrees produced? 

 The major focus of this paper is on the first research question.  Since merit-based 

scholarships require students to maintain a set level of academic achievement in order to 

continue to receive aid, there are potential unintended consequences that may occur, including 

dissuading students from studying more difficult subjects, including those categorized as STEM.  

The consequences of this outcome may be significant to economic interests at both the state and 

national levels, as STEM occupations are often seen as major drivers of innovation, and well as 

key to economic growth.  

 Since 1993, 27 states have implemented merit-based scholarships, the first and most 

studied being Georgia’s Helping Outstanding Pupils Educationally, or HOPE, scholarship 
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program.2   HOPE marked the beginning of what has been a major restructuring of the financial 

aid landscape in America.  According to the College Board, from 1993 to 2013, the percentage 

of total undergraduate state grant aid for which students’ financial circumstances were 

considered decreased from 90 percent to 76 percent.  In the 2013-2014 academic year, New 

Mexico was one of 13 states where this percentage was below 40 percent.3 

 We know more about the relationship between financial aid, enrollment, and degree 

completion than financial aid and major choice.  Different types of financial aid have varying 

effects on college enrollment.  Loans tend to have little to no effect, while grants have a positive 

and significant effect on student enrollment (Linsenmeier et al. 2006).  Students from low-

income families and students of color seem to be most responsive to such aid.  Van der Klaauw 

(2002) demonstrates that students’ choice of college are sensitive to financial aid offers.  Several 

studies show a significant and positive relationship between grant aid and student enrollment 

(Seftor and Turner 2002; Kane 2003; Heller 2009) and a negative relationship between net cost 

and enrollment (McPherson and Schapiro 1991).  The effects of merit-based aid on enrollment 

have also been well documented.  In an experimental setting, Monks (2009) finds large, positive 

effects of merit aid on enrollment.  Studying HOPE, Dynarski (2000) finds that a $1,000 award 

increased student enrollment by approximately four percent.  Also studying HOPE, Cornwell et 

al. (2006) find the program increased student enrollment by 6 percent.  In New Mexico, Binder 

and Ganderton (2002, 2004) find that while the NMLLS boosted enrollment at four-year colleges 

in New Mexico, the effect appears to be driven by additional enrollment of students that 

                                                        
 
2 See Sjoquist and Winters (2015a) for a complete list. 
3 The College Board, Trends in Student Aid 2015, Figure 28A and Figure 28B.  Retrieved January 29, 2016 from 
http://trends.collegeboard.org/sites/default/files/trends-student-aid-web-final-508-2.pdf. 
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otherwise would have attended college out-of-state.  The effect of merit aid on college 

completion has also been studied. 

 Analyzing statewide educational attainment data, Sjoquist and Winters (2012, 2015b) 

found no difference in college attainment for those exposed to lottery scholarship programs. 

Using a similar methodology, Jia (2017) found that program features matter: lower initial 

scholarship eligibility requirements increased two-year degree attainment, and funding 

generosity increased the completion of a bachelor’s degree.  Scott-Clayton (2011) found 

completion effects of 9.4 percentage points (59 percent) for students just above an ACT cut-off 

for West Virginia’s lottery-funded PROMISE scholarship program, compared to students just 

below.  Using similar strategies, Bruce and Carruthers (2014) and Welch (2014) found no 

program effect for Tennessee’s lottery scholarship.  Erwin and Binder (see Chapter 2) found no 

overall effect of generous, low-bar merit aid on college completion.  Divergent effects appeared 

when disaggregating the sample by academic preparation.  Less-academically prepared students 

appeared to exhibit lower completion rates as a result of the scholarship while more-

academically prepared students exhibited higher completion rates, two significant effects similar 

in magnitude but opposite in sign.  The authors argue that changes in student composition are 

potentially driving results.  

I examine how the NMLLS affects STEM engagement at the University of New Mexico 

(UNM) by exploring changes in 1) the likelihood of initially declaring a STEM major and 2) the 

likelihood of earning a baccalaureate degree in a STEM field before and after the implementation 

of the scholarship for eligible resident students and a matched sample of nonresident (and 

therefore ineligible) students.  Estimates reveal no significant overall effect of the NMLLS on 

declaring a STEM major or earning a STEM degree.  However, there are large and statistically 
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significant completion effects after disaggregating by academic preparation.  Academically less-

prepared eligible freshmen are 6.8 percentage points (40 percent) less likely to first declare a 

STEM major, while academically more-prepared freshmen are 12.1 percentage points (44.3 

percent) more likely to first declare a STEM major, compared to ineligible peers with similar 

high school GPAs.  In addition, there is evidence that some program effects may be a result of 

the NMLLS inducing compositional changes in the student body. 

The paper proceeds as follows: Section 2 discusses existing literature regarding merit-aid 

and major choice, and introduces the NMLLS; Section 3 presents a theoretical model of major 

choice; Section 4 describes the data; Section 5 summarizes the empirical approach; Section 6 

discusses main findings and robustness checks; Section 7 discusses other explanations for 

patterns found in the results; and Section 8 concludes. 

2. MERIT-AID AND MAJOR CHOICE 

The natural experiment of lottery-financed merit-based aid programs provides a 

promising avenue for determining the relationship between aid and major choice.  Several 

studies have analyzed how students sort into different majors.  An early study of this behavior 

can be found in Berger (1988).  Berger uses a life cycle approach that assumes students choose 

majors based on the expected discounted stream of future earnings rather than beginning wages 

following graduation.  The author provides evidence to support this approach using data from the 

National Longitudinal Survey of Young Men.  Montmarquette et al. (2002) relax two 

assumptions common in previous literature, including Berger (1988):  uniform probabilities of 

success across majors and constant earnings streams across majors.  Using the National 

Longitudinal Survey of Youth, the authors estimate the probability of success across different 

majors for all students in the sample.  These data are combined with estimates of predicted future 
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earnings in all majors from Rumberger and Thomas’s (1993) analysis of the 1987 Survey of 

Recent College Graduates, which allows the construction of a multinomial logit model of major 

choice.  Results suggest that one’s expected earnings stream is the most significant factor 

influencing major choice, yet the probability of success is an important factor as well.  

Arcidiacono et al. (2012) argues that both expected earnings and students’ perceived abilities 

across majors are important determinants of major choice. 

Arcidiacono (2004) estimates a dynamic model of college major choice, finding that even 

after controlling for selection, large earnings premiums and ability differences still exist for some 

majors.  Differences in monetary returns explain little of the ability sorting across majors.  

Instead, Arcidiacono (2004) provides evidence that virtually all ability sorting is due to 

differences in preferences for taking particular majors in college and workplace preferences for 

jobs likely to be obtained after graduation, the former being more influential than the latter.  

Similarly, Beffy et al. (2010) find a small, but statistically significant, positive earnings elasticity 

of major choice, suggesting that nonpecuniary factors are a large part of major choice (e.g., 

preferences for workload, workplace conditions, opportunities field research, et cetera.). 

Focusing on STEM fields, Wang (2013) finds that choosing a STEM major is positively 

related to high school performance, as well as initial college performance/experiences.  

Similarly, Griffith (2010) finds that differences in academic preparation and educational 

experiences drive differences in persistence rates in STEM majors.  Wiswall and Zafar (2015) 

find that while expected earnings and perceived ability play a major role in choosing STEM, 

unobserved tastes are the largest factor in major choice.  Henry and Rubenstein (2002) argue that 

merit aid may result in greater effort on behalf of high school students, thus better preparing 

students for difficult majors such as those included in STEM.  
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Four studies directly examine the relationship between merit aid and major choice.  

Analyzing Georgia’s HOPE Scholarship, Cornwell et al. (2006) use administrative data to 

compare qualified residents and nonqualified nonresident students in a difference-in-differences 

framework.  The authors find that HOPE resulted in a small 1.2 percentage point increase in the 

likelihood that residents chose education majors, relative to their nonresident counterparts.  

Cornwell et al. (2006) do not find any meaningful change in the likelihood that students chose 

STEM majors due to the advent of HOPE.  Both Dynarski (2000) and Cornwell et al. (2006) find 

evidence that state merit-based scholarships increase the likelihood that highly-academically 

prepared students stay in-state for college, and thus affect the type and quality of institutions 

attended.  This implies that crowding out of moderately-academically prepared students may 

occur as competition increases within more difficult majors. 

Using Integrated Postsecondary Education Data System files, Zhang (2011) examines 

whether Georgia’s HOPE Scholarship and Florida’s Bright Futures Scholarship affected the 

likelihood that students embarked on a course of study within STEM fields. Zhang uses 

differences-in-differences estimation for aggregate state data, and finds a statistically significant 

1.6 percentage point (11.4 percent) increase in the proportion of degrees classified as STEM at 

private institutions in Florida, but no broader effect of merit aid on STEM degree completion in 

either Florida or Georgia.  Two significant problems should be noted with this approach.  Since 

the unveiling of such programs affects how students sort into institutions, it is difficult to 

distinguish compositional change from real program impact (see Chapter 2, for example).  Also, 

asymptotic refinement should be applied in situations where there are relatively few treated units 

or policy changes in a difference-in-differences framework (Conley and Taber, 2011). 
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Stater (2011) uses administrative data from three large public universities to examine the 

relationship between tuition and financial aid on the first major a student declares.  He finds that 

larger net tuition results in students being more likely to choose professional fields such as 

architecture, business, or law and less likely to declare majors in humanities and sciences.  Merit 

aid was shown to increase the likelihood of declaring majors in humanities and sciences, while 

having a negative effect on social sciences.  It is difficult to view these estimates as causal, 

however, since Stater does not address the endogeneity of merit aid: students that receive merit 

aid are better academically prepared for college.  Thus, recipients may be more likely to choose 

STEM majors for reasons other than merit aid. 

A recent paper regarding the relationship between merit aid and major choice comes from 

Sjoquist and Winters (2015a).  Their analysis relies on a difference-in-differences strategy using 

American Community Survey (ACS) microdata.  They assign treatment status to individuals that 

were 18 years of age in a state where a merit aid program was in place, with all others assigned 

to the control group. Sjoquist and Winters divide the 27 adopting states into “strong” and “weak” 

merit aid state categories, based on their judgement of how broad-based programs are and how 

much funding they provide.  New Mexico is defined as a strong merit aid state.  Findings suggest 

that state merit-based scholarships reduce the rates of STEM completion.  Overall, strong merit 

aid programs (from 9 states) were found to reduce the number of male STEM graduates by 8 

percent, with no meaningful impact on women in the sample.  The overall impact of merit aid on 

the production of STEM degrees is estimated to be -6.5 percent.  The authors argue that men 

may be more willing to switch majors in order to retain a merit-based scholarship.  Weak merit 

aid programs were not found to have any effect on STEM degree completion.  There are several 

notable weaknesses in Sjoquist and Winters (2015a).  The authors are also not able to control for 
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student-level characteristics, which is important as merit aid may result in changes in student 

composition.  Also, as noted in Jia (2017), program features matter, and vary considerably across 

programs.  With this in mind, approaches which treat all state merit-aid programs as 

homogeneous are problematic.   

Literature on the relationship between merit aid and major choice is not in agreement, but 

the most dependable studies suggest either null or negative effects on STEM degree completion.  

In this study, I employ a rich administrative data set from New Mexico’s flagship university to 

revisit this question and others.  The main contribution to the literature is that I control for, and 

disaggregate by, student-level characteristics, which allows for more detailed insight into the 

effects of merit aid on subpopulations.  Cornwell at al. (2006) control for high school GPA, but 

do not split the sample as I do, so it’s difficult to interpret how academic preparation impacts 

major choice.  I also consider how compositional changes in academic preparation of the student 

body play an important role in interpreting results. 

 
2.1 NMLLS program details   

The NMLLS, established by the New Mexico Legislature in 1996, first became available 

to students in fall 1997.  New Mexico residents qualify for the NMLLS if they earn a high school 

diploma or general educational development equivalency in New Mexico and enroll at a public 

postsecondary institution in the first regular fall or spring semester following high school 

graduation.  Most state lottery scholarship programs reward high school achievement and begin 

with the first semester of college enrollment.  In New Mexico, however, students become 

eligible for full tuition at any of the 16 qualified public two- or four-year colleges after they 

complete a full-time course load (at least 12 credits) with a 2.5 GPA or higher in their first 

college semester.  To encourage students to try for the scholarship, New Mexico colleges offer 
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students “Bridge to Success” scholarships which completely or mostly offset tuition in their first 

semester.  In the period examined, students could receive the award for up to eight semesters, 

provided they enroll full-time, continuously, and maintained a cumulative 2.5 GPA.  Only 58 

percent of first semester students over 1994-1999 met NMLLS requirements, and only 30 

percent remained eligible at the end of their second year. 

Before the NMLLS, New Mexico nearly exclusively awarded financial aid based on 

need.  According to a 1994 National Association of State Student Grant & Aid Programs report, 

New Mexico devoted an average of $222 per full-time equivalent (FTE) undergraduate student 

in financial aid in the 1993-1994 academic year.  Of the $222 total per FTE, only $3 (1.4 

percent) was merit-based.  By contrast, in 2000, New Mexico allocated $687 per undergraduate 

FTE, with $368 (54 percent) being merit-based.  It appears the NMLLS not only supplemented 

rather than supplanted student aid, but drastically changed the student aid landscape throughout 

the state. 

Compared to states with similar programs, NMLLS eligibility requirements are relatively 

“low-bar.”  For example, Georgia’s HOPE scholarship requires students to graduate high school 

with a 3.0 cumulative GPA and maintain a 3.0 GPA in college.4  Eligibility for Tennessee’s 

HOPE scholarship requires minimum ACT/SAT scores in addition to the 3.0 high school GPA 

requirement.  Renewal requires a 2.75 minimum overall GPA after attempting 24 and 48 credit 

hours, and requires a 3.0 minimum overall GPA at 72- and 96-credit hour reviews.5  Florida’s 

                                                        
 
4Georgia Student Finance Commission, GACollege411, Georgia Hope Scholarship Program Overview.  Retrieved 
May 29, 2013 from  
https://secure.gacollege411.org/Financial_Aid_Planning/HOPE_Program/Georgia_s_HOPE_Scholarship_Program_
Overview.aspx. 
5Tennessee Student Assistance Corporation, Tennessee Hope Scholarship.  Retrieved May 29, 2013 from 
http://www.tn.gov/collegepays/mon_college/hope_scholar.htm. 
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Bright Futures Scholarship has three levels of merit-based awards, each with varying high school 

GPA, standardized test scores, and community service requirements.6 

If financial constraints are binding for students, then the NMLLS should have the desired 

effect of increasing access to higher education and boosting resident enrollment.  However, due 

to low-bar initial and ongoing scholarship qualifications of the NMLLS, much of the increase in 

resident enrollment may be on behalf of less-academically prepared students who otherwise 

would have enrolled at a less prestigious university, a two-year program at a community college, 

or perhaps not have enrolled in college at all.  With price signals in the market for higher 

education removed, some students may choose to embark on a more prestigious, yet riskier, 

academic path—one that maximizes the “worth” of the scholarship (i.e., that which covers the 

largest cost).7  Because the NMLLS is structured so that students lose the scholarship 

permanently if they fail to meet renewal requirements in any semester, some students may 

respond to merit aid by choosing easier majors which improve their chances of scholarship 

retention.  In this case, the NMLLS could have the unintended consequence of decreasing the 

proportion of students choosing and ultimately completing degrees in STEM fields.  However, as 

discussed above, renewal requirements for the NMLLS are relatively low.  If students expect 

their probabilities of success in STEM majors are sufficiently to satisfy eligibility criteria then 

students may not avoid pursuing majors in STEM.  The direction of any estimated program 

effects relies heavily on the academic preparation of resident students before and after the 

                                                        
 
6Florida Department of Education, Office of Student Financial Aid, Florida Student Scholarship and Grant 
Programs, Chart of Eligibility and Award Criteria.  Retrieved May 29, 2013 from  
http://www.floridastudentfinancialaid.org/ssfad/PDF/BFEligibilityAwardChart.pdf. 
7Consider full-time tuition at all 16 participating public institutions in New Mexico as depicted in Table 1.  A 
student better matched at Santa Fe Community college may decide to attend UNM instead simply because the 
scholarship covers more costs, the degree carries more prestige, and thus the NMLLS is “worth” more at the state’s 
flagship university. 
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introduction of the NMLLS, and is ultimately an empirical question.  Composition of the student 

body at UNM is discussed in detail below. 

3. MERIT AID AND MAJOR CHOICE 

Students’ choice of college major are modeled using a modified life-cycle approach 

developed by Montmarquette et al. (2002).  This approach holds that students choose college 

majors so as to maximize lifetime utility, which depends on expected earnings and the likelihood 

of merit scholarship retainment.  For simplicity, assume that students who are able to retain merit 

aid ultimately graduate with a bachelor’s degree.  Let pij be the likelihood of scholarship 

retainment for student i in major j.  The expected lifetime utility for student i choosing major j, 

E(Uij), is a function of predicted future earnings so that: 

(1)     𝐸(𝑈௜௝) = 𝑝௜௝(𝑿)𝑒௜௝(𝒁) + ቀ1 − 𝑝௜௝(𝑿)ቁ 𝑒௜଴(𝒁),   𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝑚, 

where X includes factors influencing the probability of retaining the scholarship, including 

academic preparation.  The vector Z includes factors affecting earnings after college.  eij are the 

discounted value of lifetime earnings after completing a degree in major j and ei0 are discounted 

value of lifetime earnings after losing the scholarship and dropping out of college without a 

degree.  Students will choose major j over major k whenever E(Uij) ≥ E(Uik) for all k ≠ j, or 

whenever, 

(2)     𝑝௜௝(𝑿)ൣ𝑒௜௝(𝒁) − 𝑒௜௞(𝒁)൧ + ൣ𝑝௜௝(𝑿) − 𝑝௜௞(𝑿)൧[𝑒௜௞(𝒁) − 𝑒௜଴(𝒁)] ≥ 0. 

According to equation (2), if the likelihoods of retaining merit aid differ substantially 

across majors, and lifetime earnings differences across majors are relatively small, then success 

probabilities will play a major role in major choice.  If likelihoods of scholarship retainment are 

approximately the same, then expected earnings will be the major driver in the choice of major.  

Thus, one would expect highly-academically prepared students, whose likelihoods of retaining 
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the merit scholarship are high across all majors, to be more likely to choose majors based on 

which has the highest expected return (i.e., STEM).8  For less-academically prepared students, I 

assume the likelihood of retaining the merit scholarship is lower for some majors relative to 

others, thus these students choose majors primarily on the basis of success probabilities, and 

choose majors which are less difficult.  Importantly, this simplified model does not account for 

tastes and preferences of students, which the literature has indicated plays an important role in 

major choice (Arcidiacono, 2004; Beffy et al., 2010; Wiswall and Zafar, 2015). 

In the context of whether broad, low-bar merit scholarships such as the NMLLS affect 

student major, the theoretical framework above suggests that more-academically prepared 

students will tend to embark on more difficult, higher-paying majors such as those in STEM 

fields, while less-academically prepared students will tend to avoid such majors in favor of less-

difficult majors, such as those within education and the liberal arts, for example. 

  

4. DATA SET 

The analysis uses administrative data for all first-time, full-time entering freshmen at 

UNM before and after the implementation of the NMLLS to estimate effects on major choice.  

UNM enrolls over 20,000 students each year in the City of Albuquerque, the largest metropolitan 

area of the state with over 500,000 residents.  UNM is nearly an open-enrollment institution.  

Data include socio-demographic information (age, race, ethnicity, gender, family income, 

                                                        
 
8Sjoquist and Winters (2015a) calculate mean earnings for persons aged 40 – 49 using 2009 – 2011 ACS data, 
finding that those majoring in STEM fields earned $95,389; those with business degrees earned $78,122; those in 
social science earned $67,735; those with health-related degrees earned $58,937; those with liberal arts degrees 
earned $58,823; and those with degrees in education earned $46,169.  They choose this age range because 1) these 
respondents are too old to be affected by state merit aid programs and 2) according to Berger (1988) mid-career 
earnings are likely to be more relevant than early-career earnings.   
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declined to state race-ethnicity), high school academic performance (high school GPA, 

standardized test scores, indication of remedial coursework at UNM), and college academic 

outcomes by semester (credits earned, declared major, college GPA, date of graduation).  Majors 

are categorized into five areas using ACS definitions: STEM, liberal arts, education, business, 

social science, and health-related.9  I also consider alternative definitions provided by UNM as a 

robustness check.  Data are complete with the exception of family income and high school GPA.  

The data set only contains family income for FAFSA-filers, constituting 51 percent of the 

sample.  For those that did not submit a FAFSA, it is assumed their family income is sufficiently 

high (i.e., ≥ $40,000) as to not qualify for the Federal Pell Grant Program.  This assumption is 

supported by a 1995-1996 Federal Pell Grant End-of-Year Report showing that less than two 

percent of Pell recipients had family income in excess of $40,000.10  This assumption is not 

perfect.  King (2004) estimates that in 2000 over ten percent of all Pell-eligible students did not 

file a FAFSA.11  If the analysis in King (2004) holds for our data set, then there would exist 

systematic measurement bias in the family income variable—some lower income students would 

be incorrectly placed in the higher income category.  High school GPA is missing for home-

schooled students, a small portion of matriculating students at UNM.  For these students, they are 

assigned the mean high school GPA of 3.28. 

Models concentrate on the years 1994 to 1999, bounding the policy change by three years 

before and after implementation.  These years encompass the largest economic expansion in the 

                                                        
 
9 Majors are categorized into these bins according to the U.S. Census Bureau, found online at 
https://www2.census.gov/programs-surveys/acs/tech_docs/code_lists/2016_ACS_Code_Lists.pdf (accessed 19 Feb 
2019). 
101995-1996 Federal Pell Grant Program End-of-Year Report, U.S. Department of Education, online at 
https://www2.ed.gov/finaid/prof/resources/data/pell-historical/pell-eoy-1995-96.pdf (accessed 26 March 2017).  
11 King, Jacqueline E. “Missed Opportunities: Students who do not Apply for Financial Aid,” American Council on 
Education Issue Brief, 2004. Online at http://www.soe.vt.edu/highered/files/Perspectives_PolicyNews/10-
04/2004FAFSA.pdf (accessed 1 April 2017). 
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U.S. since World War II.  During this period labor market conditions in New Mexico were 

gradually tightening but remained relatively stable, so one needs not to worry much that broad 

economic conditions are driving results.  To my knowledge, there were no concurrent policy 

changes at the high school or postsecondary level in New Mexico over the 1994-1999 period 

which would have differentially impacted enrollment and/or major choice for residents and 

nonresidents. 

In preferred specifications, recent high school graduates from New Mexico (who are 

NMLLS eligible) are compared with those from out of state (who are not eligible, but experience 

the same campus environment), while excluding foreign students. 

Table 2 compares summary statistics for resident and nonresident students before and 

after the implementation of the NMLLS.  It appears the composition of these groups changed 

across pre- and post-treatment periods.  In years before the implementation of the NMLLS, 

resident students had higher high school GPAs and ACT composite scores compared to years 

following the implementation of the scholarship.  Moreover, students matriculating after 

implementation were more likely to take remedial coursework at UNM.  These changes are 

statistically significant, suggesting that the NMLLS may have induced students with weaker 

academic preparation to enroll at UNM.  Table 2 also shows that residents were less likely to 

come from lower-income families following implementation of the NMLLS, another indication 

of a compositional effect.  The academic achievement of nonresident students improved 

following implementation of the scholarship, according to HSGPA and composite ACT scores.  

Also note the statistically significant decline in resident students initially declaring a STEM 

major—a decline not seen in the nonresident group.  Table 3 presents descriptive statistics for 

those earning a degree at UNM during the study period.  Note there is less evidence of a 
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compositional change in resident students, with only a small decline in high school GPA.  For 

degree earning residents, there is no descriptive evidence of a decline in STEM degree 

production after the initiation of the NMLLS. 

Although several statistically significant differences exist between resident and 

nonresident students in terms of high school GPA, composite ACT scores, remedial coursework, 

family income, race, and ethnicity, this does not threaten the validity of our difference-in-

differences model of STEM engagement if the common trends assumption holds.  The 

identifying assumption of the difference-in-differences model is that pre-treatment trends in the 

outcome variable be similar in trajectory across treatment and control groups.  As a visual check 

of this identifying assumption, Figure 1 presents pre-treatment trends in the likelihood of 

declaring a first major in STEM for residents and nonresidents between 1994 and 1999.  Visual 

inspection supports the validity of a difference-in-differences identification strategy examining 

six-year graduation rates.  Figure 2 presents pre-treatment trends in the likelihood of earning a 

STEM degree for residents and nonresidents over the same time period.  Because completion 

rates at UNM are relatively low, there are far fewer observations for this group and consequently 

the graph is quite noisy, especially for nonresidents who are greatly outnumbered by resident 

students at UNM (by nearly 11 times over).  Although Figure 1 seems reasonably comparable 

before the NMLLS was launched in 1997, Figure 2 does not pass visual inspection.  An 

empirical test of the common trends assumption is conducted following Autor (2003).  Autor 

suggests estimating flexible difference-in-differences models by interacting the resident dummy 

variable with cohort dummy variables, producing a model allowing for treatment at different 

time periods.  This model can be expressed as 

𝑃𝑟𝑜𝑏(𝑆𝑇𝐸𝑀௜௦௧) = 𝛾௦ + 𝜆௧ + ∑ 𝛽௝
௤
௝ୀି௠ 𝐷௦௧(𝑡 = 𝑘 + 𝑗) + 𝑋௜௦௧𝛿 + 𝜀௜௦௧  (3) 
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where i denotes the student, s denotes residency status, and t denotes cohort year.  The variable 

Dst is the binary treatment indicator and k is the year which the treatment started (k = 1997 in this 

case).  Xist contains controls for race, ethnicity, gender, family income, remedial coursework in 

college, high school GPA, and standardized test scores.  Models report robust standard errors.  In 

equation (3), m and q are the number of leads and lags of the treatment effect included.  Two 

leads and three lags are included in the test, defining 1999 as the reference cohort. 

Testing the common trends assumption using (3) requires examining whether 

𝛽௝ = 0 ∀𝑗 < 0. (4) 

 In other words, the common trends assumption holds when the coefficients on all leads of 

the treatment are zero.  This specification can also have the advantage of informing whether 

estimated treatment effects occur in multiple post-treatment time periods, fade away with time, 

or remain constant, for example.  Tests are conducted for the two STEM outcomes using 

ordinary least squares and results are presented in Appendix A.  Results provide evidence that 

the common trends assumption holds for all specifications, as estimated coefficients on all leads 

are not statistically different from zero.   

 Data include 10,022 resident students, 6,307 of which enrolled during the post-NMLLS 

period and were eligible for the Bridge to Success Scholarship.  Of these, 2,664 met cumulative 

GPA and credit attainment requirements to begin the NMLLS in their second semester.  Table 4 

documents the number of students that maintain the scholarship in the second through ninth 

semester.  It is apparent scholarship loss was quite common.  Of the 2,664 students that qualified 

for the NMLLS, approximately 30 percent were still eligible for the NMLLS going into their 

third year.   
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5. EMPIRICAL MODEL 

Difference-in-differences matching estimation on the propensity score is conducted to 

mitigate any observable differences between resident and nonresident students.  The approach 

uses kernel matching, a one-to-many matching technique assigning larger weights to control 

units closer in propensity score.  The general form of the matching estimator is given by 

∆஽஽ொ=
1

𝑛ଵ௧

෍ ቐ𝑌ଵ௧௜ − ෍ 𝑊(𝑖, 𝑗)𝑌଴௧

௝∈ூబ೟∩ௌ೛

ቑ −

௜∈ூభ೟∩ௌ೛

1

𝑛ଵ௧ᇲ
෍ ቐ𝑌ଵ௧ᇲ௜ − ෍ 𝑊(𝑖, 𝑗)𝑌଴௧ᇲ௝

௝∈ூబ೟ᇲ∩ௌ೛

ቑ

௜∈ூభ೟ᇲ∩ௌ೛

          (5) 

where n1t, n1t’ are the number of treated cases before and after the inception of the NMLLS, Sp is 

the common support region, and I0t, I0t’, I1t, I1t’ are the resident and nonresident groups before 

and after the NMLLS.  Major choice outcomes for resident and nonresident students are given by 

Y1t, Y0t, Y1t’, Y0t’.  The function w(i, j) denotes the weight given to j𝑡ℎ case, where ∑ 𝑤(𝑖, 𝑗)௝  = 1 

and 0 < 𝑤(𝑖, 𝑗) < 1.  The weighting function w(i, j) is given by 

𝑤(𝑖, 𝑗) =
𝐾ൣ𝑙መ൫𝑥௝൯ − 𝑙መ(𝑥௜)൧

∑ 𝐾ൣ𝑙መ൫𝑥௝൯ − 𝑙መ(𝑥௜)൧𝑗∈𝐼0𝑡∩𝑆𝑝

          (6) 

where K is the Epanechnikov kernel function and 𝑙መ(⋅) ≡ ln ቀ
௣ො(⋅)

ଵି௣ො(⋅)
ቁ is the fitted linearized 

propensity score from a logistic regression model estimated by maximum likelihood.  Linearized 

propensity scores are used as they are more likely to have a distribution that is approximately 

normal.  Treatment effects, ∆஽஽ொ, are calculated using kernel-weighted least squares according 

to equation (6).  Robust standard errors are reported.  The propensity score model includes all 

covariates in levels, as well as several quadratic terms.12  Results of the propensity score model 

                                                        
 
12A sequential search for quadratic terms to include in the propensity score model was conducted.  The first step 
involved estimating logistic models including all terms in levels and one of all possible quadratic terms.  I then 
calculate the likelihood ratio statistic for the null hypothesis that the most recently added quadratic term has a 
coefficient of zero.  The quadratic term with the highest test statistic over 2.71, corresponding to a z-statistic of 
1.645, is selected for inclusion.  This covariate is then added to the “baseline” model and the process repeated until 
all remaining likelihood ratio statistics are below the threshold of 2.71. 
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are presented in Table 5.  It is important to note that while the propensity score model may seem 

awkward in that it predicts the immutable condition of being a New Mexico resident, it is not 

essential that the propensity score model have a meaningful interpretation.  Instead, the validity 

of the propensity score model rests on how well it balances covariates across treatment and 

control groups (Imbens and Rubin, 2015; Imbens, 2015). 

Having a small group of nonresident students relative to resident students has 

implications for the estimates.  In order to increase the precision of estimated treatment effects, 

and to avoid imposing functional form where possible, kernel density matching is chosen.13  This 

method has the advantage of lower variance since more information is used.  On the other hand, 

it may result in an increase in bias due to the potential for considering “bad” matches.  Although 

the further the observations are in terms of propensity score, the less weight is given to the 

potential bad match, this makes adequate overlap a necessary condition for the validity of this 

method. 

In our analysis, matching is limited to those individuals whose propensity scores lie in the 

common support region, which is over 99.5 percent of the original sample.  No observations are 

trimmed from the analysis.  As a sensitivity analysis, effects are estimated using various fixed 

bandwidths, h, in the kernel function.  Importantly, the choice of bandwidth also involves a bias-

variance trade-off.  Smaller bandwidths consider a smaller portion of the pool of control 

observations, and thus use less information, which tends to reduce bias (from being less likely to 

consider poor matches) while increasing sampling variance.  In order to assess the effectiveness 

                                                        
 
13 There are 9,979 resident students and only 1,233 nonresident students in the sample.  One-to-many matching 
allows us to proceed without a significant loss in information.  For example, if I was to conduct a simple nearest 
neighbor matching procedure, estimates would (at most) be based on 1,233 matches, or 2,466 observations, which 
constitutes approximately 22 percent of the sample.   
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of the matching procedure, several tests are conducted following Imbens and Rubin (2015), 

although they are modified for difference-in-differences matching with repeated cross sections.  

An explanation of these tests and their results are presented in Appendix B. 

In addition to estimating the overall effect of the NMLLS, I am also interested whether 

program effects differ depending on academic preparation.  This is explored by estimating 

separate models on students above and below the mean high school GPA.14  Robustness checks 

using various STEM definitions, cohorts, and smoothing parameters are discussed in Section 6.1. 

While difference-in-differences models hinge on the comparability of pre-treatment 

trends in outcomes across residents and nonresidents, combining difference-in-differences 

methods with propensity score matching controls for compositional changes in groups over time 

(Stuart et al. 2014).  It is also worth noting that regressions control for high school achievement 

and standardized test scores, the main indication of compositional change.  Also, because UNM 

is a de facto open enrollment institution, changes in selectivity are not likely to confound the 

analysis (Binder and Ganderton, 2004).  It is clear that compositional change in the student body 

occurred, yet this does not diminish the validity of treatment effects estimated. 

6. RESULTS 

 Means and normalized differences after kernel matching are presented in Table 6.  

Comparing means before and after the NMLLS, it appears that the matching algorithm 

performed well in balancing covariates.  Normalized differences for pre- and post-NMLLS 

periods are near zero, with the largest normalized difference (-.122) far below one-quarter of a 

standard deviation unit in absolute value.  These statistics are produced by academic preparation 

                                                        
 
14 Results are similar when the sample is split around the median high school GPA. 
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as well, revealing a similar pattern, although differences were slightly higher when considering 

students more than one standard deviation above the mean high school GPA.  Overall, 

normalized differences suggest excellent balance in covariates following kernel matching. 

 Table 7 presents results of the difference-in-differences kernel matching estimation.  

Results provide no evidence of an overall effect on either first declaring a STEM major or 

earning a STEM degree.  Furthermore, there is no evidence suggesting the NMLLS had an 

impact on earned STEM degrees when the sample is disaggregated by academic preparation.  

Considering students’ decisions to first declare a major in STEM, there appears to be a divergent 

effect: students with below average academic preparation are 6.8 percentage points (40 percent) 

less likely to declare their first major to be in a STEM field, while those with above-average 

academic preparation are 12.1 percentage points (44.3 percent) more likely to declare a first 

major in STEM.  Effects are significant at ten and one percent-levels, respectively.  These 

divergent effects mask any overall program effect of the NMLLS on declaring a first major in 

STEM. 

In summary, results reveal no meaningful impact on first declaring a STEM major or 

earning a STEM degree in the aggregate.  In terms of declaring an initial major in STEM, I find 

that less-academically prepared students are averse to doing so.   Conversely, I find that more-

academically prepared students declare initial majors in STEM at higher rates compared to their 

nonresident counterparts as a result of the scholarship. 

6.1  Alternative STEM definitions, smoothing parameters, and freshmen cohorts 

Robustness checks are conducted to examine the sensitivity of results to various 

assumptions.  Appendix C offers three different definitions of STEM based on the student’s 

major.  Table C1 presents STEM majors from the ACS, our preferred categorization scheme.  
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We prefer this set of STEM majors as it was developed by the U.S. Census Bureau, is 

sufficiently narrow in scope, and is the most comprehensive list that can be found.  Further, it is 

employed by previous literature which we are keen to compare our results to (Sjoquist and 

Winters, 2015a).  Tables C2 and C3 present alternative lists of STEM majors compiled by the 

STEM Collaborative Center (SCC) at UNM.  Table C2 presents the “broad” list of STEM majors 

compiled by SCC while C3 presents the “narrow” version.  The broad list is problematic because 

it includes many majors which one may not agree qualify as being designated as STEM, 

including anthropology, economics, geography, and nursing.  The narrow list should be a subset 

of the broad list put out by SCC, yet it is not.  For example, the narrow list includes statistics 

while the broad list does not.  I nonetheless run models of STEM major declaration and STEM 

degree completion using broad and narrow lists from SCC.  Appendix D displays results of these 

regressions. 

Table D1 presents estimates using the narrow STEM definition provided by the SCC.  

Aggregate results and those disaggregated by academic preparation are shown.  In general, point 

estimates are similar to our preferred results using the ACS definition, but are attenuated in both 

magnitude and statistical significance.  Using the narrow definition, the point estimate for first 

majoring in STEM for less-academically prepared students remains negative, but is no longer 

precisely estimated.  The point estimate for first majoring in STEM for more-academically 

prepared students is still positive, yet the magnitude is smaller and it achieves statistical 

significance at a lower level.  Table D3 is structured just as other results tables, but employs the 

broad list from SCC.  One would expect the broader scope of this definition to result in further 

attenuation in terms of magnitude and statistical significance, which it does with one exception.  

Results using the broad definition estimate a large statistically significant decline in STEM major 



 23

declaration for the most-academically prepared entering freshmen, although the point estimate is 

significant only at the ten percent-level. 

In addition to examining the sensitivity of results to various definitions of STEM, it is 

also imperative to examine whether results are sensitive to the choice of smoothing parameter 

used in the kernel matching procedure.  Appendix E presents such sensitivity tests.  According to 

test performed in Appendix B, the matching procedure performed remarkably well.  This is 

further evidenced by Table E1 where one notes that only a few additional observations are 

included when increasing the bandwidth from 0.1 to 0.3.  Point estimates using bandwidths of h 

= {0.1, 0.2, 0.3} are remarkably close in magnitude and statistical significance.  There are no 

sign changes when varying the bandwidth across these values.  This provides evidence that 

bandwidth choice is not a significant driver of our main results presented in Table 7. 

Appendix F presents results using different sets of freshmen cohorts.  Although a bit 

noisier than robustness checks using alternative bandwidths, we see a similar pattern of 

completion rates emerge as compared to our preferred specification.  Some coefficients become 

imprecisely estimated when including either the 1993 cohort, the 2000 cohort, or both. 

 
7.  COMPOSITIONAL EFFECTS 

Key results from Section 6 are not entirely in agreement with the most thorough 

treatment of this subject to date.  Estimates in this paper reveal no meaningful effect of the 

NMLLS on the likelihood that students earn degrees in STEM fields, in contrast to Sjoquist and 

Winters (2015a).  However, results also provide no evidence that merit aid decreases students’ 

likelihoods of majoring in STEM, in agreement with Cornwell et al. (2006).  Further, estimates 

provide evidence of negative STEM degree effects for men, with no statistically meaningful 
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effects for women in the sample, in-line with findings in Sjoquist and Winters (2015a).15  It is 

valuable to entertain compositional effects as an alternative hypothesis for the results obtained. 

The NMLLS was designed to increase access to higher education for resident students, 

which it certainly did.  According to Table 2, the post-NMLLS period of the sample showed a 

resident population increase of 70 percent (with a much smaller 11 percent increase in 

nonresidents).  After the NMLLS was introduced, however, resident high school GPAs and 

standardized test scores fell significantly, and resident students were required to take more 

remedial courses at UNM.  This apparent change in student composition is likely key to 

interpreting much of the results found in Table 7.  According to the theoretical model presented 

in Section 3, academically marginally prepared students are likely to respond to merit aid by 

choosing majors for which their probability of success is higher.  This may explain why results 

show that less-academically prepared students majored in STEM significantly less in response to 

the NMLLS.  On the other hand, theory predicts that more-academically prepared students have 

high probabilities of success in all majors, and so are likely to choose majors with higher 

expected lifetime earnings, such as STEM. 

8. CONCLUSIONS 

 I examine the effect of an exceptionally generous and low-bar merit-based scholarship on 

intitially declaring a major in STEM and ultimately earning a degree in STEM.  Variants of the 

difference-in-differences model are estimated using qualified resident students as the treatment 

group and a matched sample of ineligible nonresident students as the control group.  The 

                                                        
 
15Although we estimate regressions splitting the sample by academic preparation and gender, we do not report these 
as the number of control units is problematically small when disaggregating the sample in this way. 
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common trends assumption is supported empirically.  The sample is stratified by academic 

preparation and gender to see which, if any, subgroups are driving completion effects.  Kernel 

matching is conducted and its success is examined through rigorous statistical testing.  A flexible 

difference-in-differences model is estimated to verify that program effects are limited to 

treatment years.  Sensitivity to cohorts included as well as the smoothing parameter used in the 

matching alogirthm are reported.  Additionally, I use alternative definitions of STEM, finding 

similar patterns in results that are attenauted in magnitude and significance-level. 

 Results reveal find no meaningful program effects in terms of declaring a STEM major or 

earning a STEM degree in the aggregate.  As per declaring an initial major in STEM, less-

academically prepared students are more likely to declare a non-STEM major, an effect that 

appears to be driven by women.  Conversely, I find that more-academically prepared students 

declare initial majors in STEM at higher rates compared to their nonresident counterparts as a 

result of the scholarship, an effect that is again driven by women at UNM.  These effects are 

similar in magnitude but opposite in sign, masking any program effect in the aggregate. 

 In motivating the paper, two main research questions were proposed.  First, do generous, 

low-bar merit scholarships discourage students from choosing majors in STEM?  Results suggest 

the answer is “no” in the aggregate, but “yes” on behalf of less-academically prepared students.  

Moreover, such programs may actually increase interest in STEM majors on behalf of well-

academically prepared students.  Second, do scholarships such as the NMLLS affect the number 

of STEM degrees produced?  The answer is a resounding “no” according to my results. 

 The main conclusion we can draw from the analysis is that low-bar merit-based 

scholarships neither increase nor decrease the production of STEM degrees.  I find little evidence 

that merit aid eligibility requirements result in students pursuing easier, non-STEM course of 
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study.  Although overall production of STEM degrees is not affected by such scholarships, they 

may alter the composition of who majors in STEM and who eventually completes a STEM 

degree.  To my knowledge, no other studies have looked at merit aid and STEM degree 

production by high- and low-achieving students.  We find a divergent effect of the NMLLS on 

major choice, in accordance with the theoretical model posed by Montmarquette et al. (2002): 

more-academically prepared students are more likely to declare a major in STEM, while less-

academically prepared students are less likely to do so. 

 Since its inception in 1997, the NMLLS has seen significant changes.  Starting in the 

2014-2015 academic year, the scholarship was capped at seven semesters (plus the initial 

bridging semester) and initial and renewal credit requirements were increased from 12 to 15 

credits earned per semester.  A statewide budget crisis in 2017 resulted in the legislature making 

major cuts to the NMLLS—whereas the scholarship paid 100 percent of tuition over our study 

period, the program only covers approximately 60 percent of tuition as of the 2017-2018 

academic year.  The 2017 Regular Session saw the passage of SB 420, which allows students to 

take a “gap” year after high school and still remain eligible for the NMLLS.  It is not clear how 

recent program changes will affect student choice of major at UNM. 
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Note:  The plot above show the likelihood of declaring the first major in STEM for incoming cohorts over the 
period 1994 to 1999.  Solid lines represent resident students while dashed lines represent nonresident 
students.  The vertical bars at 1997 mark the implementation of the New Mexico Legislative Lottery 
Scholarship. 

Figure 1.  Pre-Post Trends in the Likelihood of Declaring First Major in STEM, by Residency 
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Note:  The plot above show the likelihood of declaring the first major in STEM for incoming cohorts over the 
period 1994 to 1999.  Solid lines represent resident students while dashed lines represent nonresident 
students.  The vertical bars at 1997 mark the implementation of the New Mexico Legislative Lottery 
Scholarship. 

Figure 2.  Pre-Post Trends in the Likelihood of Earning a Degree in STEM, by Residency 
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Table 1.  Full-time resident tuition at all NMLLS-eligible institutions 

 
  

Institution
Program Length 

(years)
Tuition 

and Fees
New Mexico Institute of Mining and Technology 4 7,000     
University of New Mexico 4 6,950     
New Mexico State University 4 6,729     
Western New Mexico University 4 6,644     
Eastern New Mexico University 4 5,630     
New Mexico Highlands University 4 5,550     
New Mexico Military Institute 2 5,179     
Northern New Mexico College 4 5,112     
Mesalands Community College 2 1,990     
San Juan College 2 1,773     
Central New Mexico Community College 2 1,340     
Clovis Community College 2 1,324     
Santa Fe Community College 2 1,196     
New Mexico Junior College 2 1,158     
Luna Community College 2 968        
Southwestern Indian Polytechnic Institute 2 730        

Source:   Institution financial aid department websites.   Accessed 28 March 2017.  
Figures present tuition and fees for one academic year taking fifteen credit hours per 
semester.  For two-year schools it is assumed the student is within the community 
college district, where applicable.
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Table 2.  Student characteristics before and after initiation of the NMLLS program, First Major 
Declared, ACS Major Codes 

  Residents  Nonresidents 

Variable  Before After Diff.  Before After Diff. 

         
First Major Declared:         
      STEM   .236 .221 -.015*   .179 .151 -.026 
      Liberal Arts  .158 .184  .026***  .206 .237 .031 
      Education   .074 .101  .027***   .061 .088 .027* 
      Business  .075 .094  .019***  .065 .071 .006 
      Social Science   .110 .101 -.009   .112 .122 .010 
      Health-Related  .133 .114 -.019***  .121 .083 -.038** 
      Never Declared  .214 .183 -.031***  .256 .248 -.008 
              
HSGPA  3.312 3.273 -.038***  3.233 3.300 .067** 
  (.502) (.471)   (.532) (.503)  
              
ACT  22.530 22.176 -.354***  22.317 22.861 .544** 
  (3.834) (3.887)   (4.109) (4.096)  
              
Remedial  .264 .290 .026***  .164 .227 .063*** 
              
Income < $40K  .230 .205 -.025***  .155 .162 .007 
              
Female  .571 .565 -.006  .526 .545 .019 
         
Hispanic  .386 .375 -.011  .147 .166 .020 
         
Native  .043 .045 .002  .041 .051 .010 
         
Asian  .047 .037 -.010**  .034 .026 -.008 
         
Black  .021 .022 .002  .082 .080 -.002 

Observations 
                   

3,715  
                

6,307  
 

                   
587  

                
649  

 

              
Source: Freshmen Tracking System, Office of Institutional Analytics, UNM. ***, **, and * represent 
statistical significance at the 1, 5, and 10 percent-levels, respectively.  Standard deviations are in 
parentheses. 

  



 34

Table 3.  Student characteristics before and after initiation of the NMLLS program, Degree Type 
Earned, ACS Major Codes 

  Residents  Nonresidents 

Variable  Before After Diff.  Before After Diff. 

         
Degree Type Earned:         
      STEM   .253 .240 -.013   .173 .195 .022 
      Liberal Arts  .262 .249  -.013  .341 .326 -.015 
      Education   .116 .081  -.035***   .121 .026 -.095*** 
      Business  .157 .190  .033***  .185 .163 -.022 
      Social Science   .167 .177 .010   .145 .237 .092** 
      Health-Related  .044 .064 .020***  .035 .053 .018 
              
HSGPA  3.479 3.455 -.024*  3.483 3.473 -.010 
  (.467) (.439)   (.460) (.442)  
              
ACT  23.268 23.085 -.183  23.526 23.807 .281 
  (3.761) (3.784)   (3.865) (3.888)  
              
Remedial  .192 .196 .004  .138 .150 .012 
              
Income < $40K  .194 .173 -.021*  .128 .140 .012 
              
Female  .616 .616 .000  .622 .609 -.013 
         
Hispanic  .366 .358 -.008  .097 .159 .062* 
         
Native  .022 .023 .001  .010 .039 .029* 
         
Asian  .052 .041 -.011*  .041 .019 -.021 
         
Black  .016 .018 .002  .102 .058 -.044 

Observations 
                   

1,547  
                

2,543  
 

                   
173  

                
190  

 

              
Source: Freshmen Tracking System, Office of Institutional Analytics, UNM. ***, **, and * represent 
statistical significance at the 1, 5, and 10 percent-levels, respectively.  Standard deviations are in 
parentheses. 
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Table 4: NMLLS Student Attrition, 1994-1999 
 
Semester Residents Eligible Percent Remaining 
2                           2,664  100.0% 
3                           2,249  84.4% 
4                           2,017  75.7% 
5                           1,863  69.9% 
6                           1,734  65.1% 
7                           1,629  61.1% 
8                           1,568  58.9% 
9                           1,510  56.7% 
Source: Office of Institutional Analytics, University of New 
Mexico.  We consider the sample of resident students that met 
cumulative GPA and credit requirements in their first semester to 
qualify for the NMLLS. 
  



 36

Table 5: Estimated parameters for propensity score model of NMLLS data, 1994-1999 
 

Variable Estimate Std. Error 
   
HSGPA 1.729** .724 
ACT .498*** .090 
Remedial .891*** .118 
Income < 20K .268* .158 
Income < 40K .160 .108 
Female 1.670*** .367 
Hispanic 1.865*** .550 
Native American 1.884** .923 
Asian .032 .207 
Black -5.729*** 1.155 
Declined to state race-ethnicity -.108 .282 
ACT2 -.013*** .002 
ACT*Black .141*** .045 
Female*White -.571*** .146 
HSGPA2 -.461*** .116 
ACT*Female -.053*** .016 
ACT*HSGPA .059*** .020 
Remedial*Asian 1.147** .505 
GPA*Black .546 .339 
ACT*Native -.082** .041 
Female*Native -.608* .317 
HSGPA*Hispanic -.312* .165 
   
Constant -7.711*** 1.600 
   
Observations  11,258 
   

Standard errors are in parentheses. ***, **, and * correspond to statistical 
significance at the 1, 5, and 10 percent levels, respectively.  Propensity 
scores are estimated using a logistic model.  Forty-nine observations were 
dropped following estimation of the propensity score to ensure overlap, 
leaving 11,209 observations. The variable Declined to state race-ethnicity 
is equal to one if the student declined to state their race-ethnicity, and zero 
otherwise. 
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Table 6:  Means and normalized differences after kernel matching, full sample, 1994-1999 
 

 
 

Pre-NMLLS 
 

Post-NMLLS 
  

Variable 
 

Res. 
 

Nonres. 
 

ND 
 

Res. 
 

Nonres. 
 

ND 

             
HS GPA  3.31  3.27  .088  3.27  3.33  -.122 
             
Composite ACT  22.56  22.37  .047  22.19  22.58  -.099 
             
Remedial  0.26  0.24  .032  0.29  0.28  .012 
             
Income < $40,000  0.22  0.21  .040  0.20  0.21  -.032 
             
Female  0.57  0.58  -.009  0.56  0.59  -.063 
             
Hispanic  0.39  0.39  -.019  0.37  0.36  .025 
             
Native  0.04  0.04  .001  0.05  0.05  -.030 
             
Asian  0.04  0.03  .058  0.04  0.03  .019 
             
Black  0.02  0.02  -.023  0.02  0.02  .018 
             
Means are from Epanechnikov kernel matching performed with a bandwidth of h = .2.  Normalized 
differences (ND) are calculated by taking the difference average covariate values by residency status and 
dividing by a measure of standard deviation. 
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Table 7: NMLLS and major choice by academic preparation, American Community Survey 
definition, 1994-1999 
 

Group      Obs. First Declared STEM Obs. Majored in STEM 

     
Full Sample 11,209 .026 4,438 -.012 
  (.030)  (.057) 
     
     𝑌ത  .221  .240 
     
HSGPA ≤ 3.28 5,473 -.068* 1,507 .147 
  (.040)  (.093) 
     
     𝑌ത  .170  .145 
     
HSGPA > 3.28 5,734 .121*** 2,930 -.051 
  (.046)  (.073) 
     
     𝑌ത  .273  .291 
     
HSGPA > 3.78 2,105 -.063 1,271 -.061 
  (.067)  (.119) 
     
     𝑌ത  .334  .386 
     
Robust standard errors are reported in parentheses.  *, **, and *** denote statistical significance at the 
10, 5, and 1 percent-level, respectively.  Estimates are from difference-in-differences kernel matching 
performed with a bandwidth of h = .2 using the Epanechnikov kernel function.  We report estimates for 
students with below average or average high school GPAs (≤ 3.28), above average high school GPAs 
(> 3.28), and high school GPAs greater than one standard deviation above the mean (> 3.78).  𝑌ത 
denotes the baseline rate of STEM major choice by academic preparation. 
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APPENDIX A.  FLEXIBLE DIFFERENCE-IN-DIFFERENCES RESULTS 
 
 
 
Table A1: Common trends assumption test, American Community Survey definition, 1994-1999 

 

Leads/Lags  First Declared Degree Earned 

    
    
    
NMLLS t-3  .026        .064 
  (.037) (.075) 
    
NMLLS t-2  -.052 -.018 
  (.040) (.081) 
    
NMLLS t-1  -.058 .050 
  (.042) (.073) 
    
NMLLS t0  .026 -.003 
  (.037) (.074) 
    
NMLLS t+1  .009 .070 
  (.036) (.070) 
    
R2  .0609 .1249 
    
Prob > F  .464 .666 
    
Observations  11,258 4,453 
    
Robust standard errors are reported in parentheses.  Ordinary least 
squares estimates for all students entering UNM between 1994 – 
1999 given.  Reported coefficients are on interactions between cohort 
years and a resident dummy variable.  Models include resident and 
cohort dummies as well as controls for race, ethnicity, standardized 
test scores, high school GPA, gender, and family income. The period 
t0 is 1997, the year the NMLLS was implemented.  *, **, and *** 
denote statistical significance at the 10, 5, and 1 percent-level, 
respectively. NMLLSt+2 (1999) serves as the base year.  Prob > F 
displays the p-value of the null hypothesis that estimated coefficients 
on leading periods are jointly different from zero. 
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APPENDIX B.  ASSESSING PROPERTIES OF THE PROPENSITY SCORE 
 

 
 

In order to examine the effectiveness of our matching procedure, we first assess overlap 

in the propensity score both before and after the NMLLS is in place.  Note that tests conducted in 

this section use only information concerning covariates and residency classification, and do not 

consider completion rates, therefore cannot intentionally introduce bias in subsequent analyses.  

For a thorough treatment of these tests, see Imbens and Rubin (2015). 

Figure B1 presents histogram estimates of the distribution of linearized propensity scores 

before and after the implementation of the NMLLS, by residency.  First inspection reveals 

substantial overlap in the linearized propensity score across residents and nonresidents, both 

before and after the NMLLS was launched.  As a more formal check, we calculate the percent of 

observations where there exists an observation of the opposite treatment status with a difference 

in linearized propensity score less than 10 percent.  These measures are presented in Table B1.  

For residents, approximately 99 percent of students had at least one closely matching nonresident 

student in terms of linearized propensity score both before and after the launch of the NMLLS.  

For nonresidents, this percentage was approximately 97 percent.  This suggests we should be 

able to credibly estimate causal effects of the NMLLS on student graduation under the 

assumption of unconfoundedness. 

We next perform two tests assessing the balancing property of the propensity score, 

which asserts that conditional on the propensity score, treatment assignment and student 

characteristics are independent of one another.  We perform these tests both before and after the 

NMLLS is launched.  If results of these tests are favorable, this constitutes evidence supporting 

the assumption of unconfoundedness, although it cannot be directly tested.  The balancing 

property can be formally represented as:  
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𝑊௜  ⫫  𝑋௜  | 𝑙(𝑋௜)         (𝐵1) 

where Wi is a binary treatment indicator equal to one if student i is a New Mexico resident, and 

zero otherwise, Xi is a vector of covariates, and l(Xi) is the true linearized propensity score.  

Because we do not know the true linearized propensity score, we approximate this test by instead 

using its estimated counterpart, 𝑙መ(𝑋௜).  Our strategy is to stratify the sample into J blocks, 

𝐵௜(1), … , 𝐵௜(𝐽), so there will be no significant difference between linearized propensity scores 

within each block.  This way, (B1) becomes 

𝑊௜  ⫫  𝑋௜  | 𝐵௜(1), … , 𝐵௜(𝐽).          (𝐵2) 

Equation (B2) can be examined by testing whether residency classification and covariates 

are uncorrelated within each of the J blocks, so that 

𝐸[𝑋௜|𝑊௜ = 1, 𝐵௜(𝑗) = 1] = 𝐸[𝑋௜|𝑊௜ = 0, 𝐵௜(𝑗) = 1]          (𝐵3) 

for all blocks, j = 1, …, J.  Tables B2 and B3 present the results of this stratification procedure.  

For the pre-NMLLS period, we split the sample into 11 blocks using the linearized propensity 

score.  Near the upper end of the propensity score distribution, we were not able to further split 

blocks 10 and 11 due to a small number of nonresident students relative to the number of 

resident students.16  We also encountered this issue when stratifying the sample in the post-

NMLLS period, although at the opposite end of the propensity score distribution.  We 

nonetheless consider the stratification successful, as only two of the 25 blocks created were left 

with propensity scores that were significantly different across resident and nonresident groups at 

the five percent level. 

                                                        
 
16 In order to perform subsequent hypothesis testing, we are not able to further split blocks where new blocks would 
have fewer members than K + 2, where K is the number of covariates. 
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With pre- and post-NMLLS samples stratified, we then assess covariate balance within 

blocks.  These tests can be thought of “pseudo treatment effects” as they examine the effect of 

treatment on pre-treatment covariates, where the effects are a priori known to be zero.  

Confirmation that pseudo treatment effects are zero constitutes evidence that equation (B3) 

holds, supporting the assumption of unconfoundedness.  We conduct two different tests.  First, 

we test separately, by each covariate, whether within-block differences between residents and 

nonresidents are equal to zero.  Second, for each covariate we test whether the weighted average 

of within-block differences between residents and nonresidents are equal to zero.  Results of 

these tests for pre- and post-NMLLS cohorts are reported in Tables B4 and B5, respectively.  

We analyze the results of these tests as if data arose from a stratified random experiment.  

The first approach for assessing covariate balance focuses on one covariate-block dyad at a time.  

We calculate z-statistics testing the null hypothesis that the difference between residents and 

nonresidents in the dyad is equal to zero.  These tests produce a large amount of information, 

however they are not very informative when examined individually.  Of the 113 pre-NMLLS 

tests, only seven (six percent) had z-statistics above two.  Similarly, of the 148 post-NMLLS 

tests, only twelve (eight percent) exceeded two in absolute value.  It is informative to present 

these statistics in Q-Q plots, where z-values are compared against their expected values under 

independent draws from a standard normal distribution.  If the distributions of z-values closely 

follow the 45 degree lines in these plots, it is evidence that the propensity score was effective in 

balancing covariates as if treatment was randomly assigned within blocks.  Q-Q plots are 

presented in Figures B2 and B3.  Both appear to follow the normal distribution reasonably well, 

although they are slightly skewed to the right (especially for pre-treatment cohorts).  One major 
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outlier deserves attention in Figure B2—it is due to the incomparability of black resident and 

nonresident students at UNM at a particular region of the propensity score distribution.17 

The column labeled as the overall t-statistic tests the null hypothesis that the block-

adjusted weighted average of within block differences is equal to zero.  Finding z-values larger 

in absolute value than we would expect if they were drawn independently from a standard 

normal distribution is evidence that the stratification does not adequately balance covariates, 

suggesting that the propensity score model is not satisfactory and may need to be refined.  

According to Table B4, there do not appear to be any significant balance issues for pre-NMLLS 

cohorts.  For these cohorts, the largest t-statistic we find is 1.73, suggesting excellent balance.  

Table B5 reveals that there may exist some imbalance in the high school GPA and ACT 

composite score covariates for post-NMLLS cohorts.  The z-statistics for these covariates are 

2.17 and 2.14 in absolute value, respectively, indicating that we can reject the null hypothesis 

that the weighted averages of within-block differences are zero for both of these variables at the 

five percent level.  Analyzing normalized differences between residents and nonresidents for 

these covariates after matching is performed provides an additional check as to whether this 

imbalance requires estimating a more flexible propensity score or perhaps trimming the sample.  

Although the propensity score model did not perform as well as would randomization into 

treatment within blocks, overall we feel it worked adequately in balancing covariates across 

resident and nonresident students. 

 

 

  

                                                        
 
17Although this outlier is visually striking, it is driven by the relatively small number of black students at UNM (less 
than 3 percent of the sample). 
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Note:  The left and right panels overlap linearized propensity scores for residents and nonresidents 
before and after the implementation of the NMLLS, respectively, allowing for visual inspection of 
sufficient overlap, a critical requirement for successful propensity score matching. Both figures 
indicate there is sufficient overlap of residents and nonresidents. 

Figure B1.  Linearized Propensity Scores, by Residency and NMLLS Implementation 
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Note:  The left panel presents a normal Q-Q plot of t-statistics from within-block tests before implementation of the 
NMLLS.  Normal Q-Q plots graph actual percentiles against theoretical percentages from a normal distribution with 
the same mean and standard deviation.  Normality is evidenced by a straight line of plotted values.  Above right is a 
histogram of the same t-statistics with a fitted normal curve.  Both plots provide visual evidence of slight positive 
skew. 

 
Figure B2.  Visual check of normality of within-block differences across resident status, pre-
NMLLS 
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Note:  The left panel presents a normal Q-Q plot of t-statistics from within-block tests after implementation of the 
NMLLS.  Normal Q-Q plots graph actual percentiles against theoretical percentages from a normal distribution with 
the same mean and standard deviation.  Normality is evidenced by a straight line of plotted values.  Above right is a 
histogram of the same t-statistics with a fitted normal curve.  Again, both plots provide visual evidence of slight 
positive skew. 

Figure B3.  Visual check of normality of within-block differences across resident status, post-
NMLLS 
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Table B1.  Proportion of units with match discrepancy in terms of linearized propensity score 
less than 10 percent 

 

Measure  Pre-NMLLS  Post-NMLLS 

     
qnonresident  .971  .968 
        
qresident  .989  .995 
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Table B2.  Propensity score blocks and their boundaries, pre-NMLLS 

Block Lower Upper Width Nonresidents Residents t-Statistic 

       
1 .238 .688 .449 37 29 -.854 
       
2 .688 .757 .070 24 43 -.796 
       
3 .757 .800 .043 47 86 -.598 
       
4 .800 .830 .030 57 209 -.057 
       
5 .830 .843 .013 47 219 .054 
       
6 .843 .851 .009 62 205 .154 
       
7 .851 .888 .036 167 899 .783 
       
8 .888 .920 .032 62 471 .304 
       
9 .920 .945 .025 38 496 .065 
       

10 .945 .961 .015 23 510 -3.274 
       

11 .961 .985 .024 21 513 -1.519 
            
Above presents results of an attempt to stratify the sample on the linearized propensity score.  
t-statistics are for the null hypothesis of equality in linearized propensity scores between 
resident and nonresident students.  Blocks 10 and 11 could not be split further as there would 
be an insufficient number of members in new groups for subsequent hypothesis testing. 
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Table B3.  Propensity score blocks and their boundaries, post-NMLLS 

Block Lower Upper Width Nonresidents Residents t-Statistic 

       
1 .249 .717 .468 40 68 -3.393 
       
2 .717 .780 .063 25 83 -1.314 
       
3 .780 .813 .033 28 188 -1.493 
       
4 .813 .832 .019 49 383 -.835 
       
5 .832 .852 .020 110 758 .419 
       
6 .852 .869 .017 109 755 -.516 
       
7 .869 .888 .020 89 779 -.557 
       
8 .889 .896 .007 36 180 -.292 
       
9 .896 .904 .008 18 199 -.877 
       

10 .904 .922 .017 26 407 -.971 
       

11 .922 .937 .015 31 402 .328 
       

12 .937 .946 .010 22 411 -1.339 
       

13 .946 .962 .015 45 821 -.569 
       

14 .962 .987 .025 20 846 -.390 
            
Above presents results of an attempt to stratify the sample on the linearized propensity score.  
t-statistics are for the null hypothesis of equality in linearized propensity scores between 
resident and nonresident students.  Block 1 could not be split further as there would be an 
insufficient number of members in new groups for subsequent hypothesis testing. 
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Table B4:  Tests for balance conditional on propensity score, pre-NMLLS 
 

 
 
 
 
 
 
  

Covariate   Within Blocks   Overall 

                              
    1 2 3 4 5 6 7 8 9 10 11   t-Statistic 
High School 
GPA   0.37 -0.37 -1.81 -2.21 1.51 -0.15 -0.74 -1.27 -0.78 -0.03 -0.22   1.73 
Composite ACT   -0.94 -2.31 -1.58 -1.82 -0.75 -0.60 0.09 -1.35 -0.56 2.25 0.09   0.85 
Remedial   -2.43 0.22 -0.85 0.67 1.46 -0.40 0.01 0.45 -0.97 -0.92 -0.83   0.83 
Income < 20K   0.27 -0.76 -0.07 0.99 1.20 0.59 -0.83 -1.04 -0.36 0.40 0.35   0.59 
Income < 40K   0.19 -0.85 -0.85 -0.90 -0.45 1.46 -0.47 0.88 -0.97 -1.08 0.29   1.17 
Female   -0.83 -1.07 0.05 -0.42 0.58 -0.90 0.50 -1.91 1.69 -0.74 0.16   0.27 
Hispanic   -1.13 1.35 -0.74 1.92 - -0.78 -0.08 0.73 -0.58 0.12 1.31   -0.76 
Native   - -0.74 -1.69 -0.54 2.76 -0.07 -0.39 -0.33 0.01 0.53 -   -0.10 
Asian   0.88 1.35 -0.07 1.93 -0.93 0.08 -0.02 -1.23 2.64 -0.64 -1.31   -0.03 
Black   -1.41 -0.63 -1.29 -0.90 0.36 -0.55 0.54 5.08 -0.55 - -   -1.08 
Declined   - 1.35 -0.74 -0.91 -0.46 - -1.30 0.11 -0.48 -0.21 -   1.22 
                              
                              
z-statistics test the null hypothesis of equality of means within blocks for resident and nonresident students.  Overall t-
statistics test the null hypothesis that the weighted average of differences across blocks is equal to zero.  Declined is 
equal to zero if the student declined to state their race-ethnicity, and zero otherwise. 
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Table B5:  Tests for balance conditional on propensity score, post-NMLLS 
 

 

Covariate Overall

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t-Statistic
High School GPA -1.88 -2.38 -1.76 1.49 1.56 2.07 1.20 -0.19 0.67 0.94 1.50 0.82 0.51 0.06 -2.17
Composite ACT -2.24 -0.63 0.42 2.35 1.90 -0.88 2.44 0.34 1.85 0.53 -0.56 0.57 -0.15 0.54 -2.14
Remedial 2.79 1.45 -0.43 0.25 0.11 1.23 -1.97 0.74 -2.25 -0.99 1.63 -1.03 1.46 -0.80 0.28
Income < 20K -0.11 -0.38 -0.87 1.45 0.13 1.24 -0.54 0.17 0.66 -0.11 -1.06 0.22 -0.61 0.66 -0.33
Income < 40K 1.28 -0.16 -1.25 0.35 -0.85 0.62 -0.14 -0.91 2.95 -0.87 -0.87 -0.15 -1.69 2.09 -0.69
Female -0.96 -0.82 -0.08 1.34 0.06 1.97 -0.07 -0.27 -1.02 0.75 0.84 1.25 -0.58 0.10 -1.14
Hispanic -0.77 -0.55 -0.67 -0.36 0.74 -0.85 0.45 -1.52 -0.44 0.53 -1.04 -0.64 -1.19 0.38 0.86
Native - -0.17 -0.49 -0.50 -0.35 0.69 -1.12 2.04 -0.16 0.16 0.83 0.46 0.19 -0.15 -0.45
Asian - -0.55 1.57 1.04 -0.85 -1.58 -0.33 -0.25 0.20 -0.32 0.74 1.53 1.55 -0.36 -0.06
Black 1.47 0.55 -0.58 -0.95 0.70 0.30 0.35 -0.78 -0.52 -0.72 -0.39 -0.57 - - 0.38
Declined - 2.66 -0.96 -0.88 0.29 0.43 1.24 -1.01 0.10 2.83 -0.84 -0.57 -0.41 - -1.23

Within Blocks

z-statistics test the null hypothesis of equality of means within blocks for resident and nonresident students.  Overall t-statistics test 
the null hypothesis that the weighted average of differences across blocks is equal to zero.  Declined is equal to zero if the student 
declined to state their race-ethnicity, and zero otherwise.
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APPENDIX C.  CATEGORIZING OF STEM MAJORS 
 
 
Table C1: Majors classified as STEM according to the American Community Survey 
 

ACS Code ACS Code Description 
 

2402 Biological engineering   
2403 Architectural engineering   
2404 Biomedical engineering   
2405 Chemical engineering   
2406 Civil engineering   
2407 Computer engineering   
2408 Electrical engineering   
2409 Engineering mechanics, physics, and science   
2410 Environmental engineering   
2411 Geological and geophysical engineering   
2412 Industrial and manufacturing engineering   
2413 Materials engineering and materials science   
2414 Mechanical engineering   
2415 Metallurgical engineering   
2416 Mining and mineral engineering   
2417 Naval architecture and marine engineering   
2418 Nuclear engineering   
2419 Petroleum engineering   
2499 Miscellaneous engineering   
2500 Engineering technologies   
2501 Engineering and industrial management   
2502 Electrical engineering technology   
2503 Industrial production technologies   
2504 Mechanical engineering related technologies   
2599 Miscellaneous engineering technologies   
3600 Biology   
3601 Biochemical sciences   
3602 Botany   
3603 Molecular biology   
3604 Ecology   
3605 Genetics   
3606 Microbiology   
3607 Pharmacology   
3608 Physiology   
3609 Zoology   
3611 Neuroscience   
3699 Miscellaneous biology   
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Table C1 (Continued) 
 

ACS Code ACS Code Description 
  
3700 Mathematics 
3701 Applied mathematics 
3702 Statistics and decision science 
3801 Military technologies 
4002 Nutrition sciences 
4003 Neuroscience 
4005 Mathematics and computer science 
4006 Cognitive science and biopsychology 
5000 Physical sciences 
5001 Astronomy and astrophysics 
5002 Atmospheric sciences and meteorology 
5003 Chemistry 
5004 Geology and earth science 
5005 Geosciences 
5006 Oceanography 
5007 Physics 
5008 Materials science 
5098 Multi-disciplinary or general science 
5102 Nuclear, industrial radiology, and biological technologies 
5901 Transportation sciences and technologies 
6106 Health and medical preparatory programs 
6108 Pharmacy, pharmaceutical sciences, and administration 
6202 Actuarial science 
6212 Miscellaneous information systems and statistics 
  

The code list from the American Community Survey was referenced 22 Jan 2018 and can be 
found online at 
https://www2.census.gov/programssurveys/acs/tech_docs/code_lists/2016_ACS_Code_Lists.
pdf.  See Sjoquist and Winters (2015a) for a more exhaustive list that categorizes majors into 
other categories including liberal arts, health-related, social sciences, education, and business. 

  



 54

Table C2: Majors classified as STEM according to the STEM Collaborative Center at the  
University of New Mexico, Broad Definition 
 

Major Code(s) Major Description 

 
5, ANTH Anthropology   
6, ARCH Architecture   
249, BIOC Biochemistry   
12, BIOL Biology   
15, CHE Chemical Engineering   
16, CHEM Chemistry   
17, CE Civil Engineering   
171, CPE Computer Engineering   
109, 168, ACS, CS Computer Science   
262, CONE Construction Engineering   
263, 474, CMGT, CONM Construction Management   
22, 23, DEHY, DHYG Dental Hygiene   
340, EPS Earth and Planetary Sciences   
27, ECON Economics   
173, EE Electrical Engineering   
379, EMS Emergency Medical Services   
438, ENSC Environmental Science   
371, GENG General Engineering   
46, GEOG Geography   
481, HMHV Health, Medicine and Human Values   
INGV Integrative Studies   
110 Management Information Systems   
64, MATH Mathematics   
65, ME Mechanical Engineering   
353, MEDL Medical Laboratory Sciences   
76, NE Nuclear Engineering   
77, 456, NUR, NURS Nursing   
24, NDIT Nutrition/Dietetics   
81, PHYC Physics   
405, PAP Physics and Astrophysics   
FANT Pre Anthropology   
FBIC Pre Biochemistry   
FBIO Pre Biology   
FCH Pre Chemical Engineering   
FCHM Pre Chemistry   
FCE Pre Civil Engineering   
FCP Pre Computer Engineering   
FCS Pre Computer Science   
FEPS Pre Earth and Planetary Sciences   
FECO Pre Economics   
    



 55

Table C2 (Continued) 
 

Major Code(s) Major Description 

  
FEE Pre Electrical Engineering 
FESC Pre Environmental Science 
  

The code list was provided by the Office of Institutional Analytics at the University of New Mexico.  STEM-
designated majors are according to the University of New Mexico STEM Collaborative Center and can be found 
online at https://stem.unm.edu/tools-for-faculty-and-staff/5517-broad-data.pdf (accessed 24 Jan 2018).  This is 
considered the “broad” list of STEM majors at the University of New Mexico. 
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Table C3: Majors classified as STEM according to the STEM Collaborative Center at the  
University of New Mexico, Narrow Definition 
 

Major Code(s) Major Description 

 
249, BIOC Biochemistry   
12, BIOL Biology   
15, CHE Chemical Engineering   
16, CHEM Chemistry   
17, CE Civil Engineering   
171, CPE Computer Engineering   
109, 168, ACS, CS Computer Science   
262, CONE Construction Engineering   
263, 474, CMGT, CONM Construction Management   
340, EPS Earth and Planetary Sciences   
173, EE Electrical Engineering   
438, ENSC Environmental Science   
371, GENG General Engineering   
64, MATH Mathematics   
65, ME Mechanical Engineering   
76, NE Nuclear Engineering   
81, PHYC Physics   
405, PAP Physics and Astrophysics   
FANT Pre Anthropology   
FBIC Pre Biochemistry   
FBIO Pre Biology   
FCH Pre Chemical Engineering   
FCHM Pre Chemistry   
FCE Pre Civil Engineering   
FCP Pre Computer Engineering   
FCS Pre Computer Science   
FCOE Pre Construction Engineering   
FCON Pre Construction Management   
FEPS Pre Earth and Planetary Science   
FEE Pre Electrical Engineering   
FESC Pre Environmental Science   
FMAT Pre Mathematics   
FME Pre Mechanical Engineering   
FNE Pre Nuclear Engineering   
FPHY Pre Physics   
FSTA Pre Statistics   
STAT Statistics   
    

The code list was provided by the University of New Mexico.  STEM-designated majors are according to the 
University of New Mexico STEM Collaborative Center and can be found online at 
https://stem.unm.edu/common/pdfs/17-benchmarking-narrow.pdf (accessed 5 Feb 2018).  This is considered the 
“narrow” list of STEM majors at the University of New Mexico. 
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APPENDIX D.  ALTERNATIVE STEM DEFINITIONS 
 

 
Table D1: NMLLS and major choice by academic preparation, UNM narrow STEM definition, 
1994-1999 
 

Group      Obs. First Declared STEM Obs. Majored in STEM 

     
Full Sample 11,209 .022 4,692 .009 
  (.029)  (.052) 
     
     𝑌ത  .197  .194 
     
HSGPA ≤ 3.28 5,473 -.022 1,574 .121 
  (.031)  (.086) 
     
     𝑌ത  .153  .110 
     
HSGPA > 3.28 5,734 .084* 3,117 -.011 
  (.045)  (.068) 
     
     𝑌ത  .312  .238 
     
HSGPA > 3.78 2,105 -.099 1,357 -.094 
  (.063)  (.099) 
     
     𝑌ത  .299  .332 
     
Robust standard errors are reported in parentheses.  *, **, and *** denote statistical significance at the 
10, 5, and 1 percent-level, respectively.  Estimates are from difference-in-differences kernel matching 
performed with a bandwidth of h = .2 using the Epanechnikov kernel function.  We report estimates for 
students with below average or average high school GPAs (≤ 3.28), above average high school GPAs 
(> 3.28), and high school GPAs greater than one standard deviation above the mean (> 3.78).  𝑌ത 
denotes the baseline rate of STEM major choice by academic preparation. 
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Table D2: NMLLS and major choice by academic preparation, UNM broad STEM definition, 
1994-1999 
 

Group      Obs. First Declared STEM Obs. Majored in STEM 

     
Full Sample 11,209 .025 4,692 -.033 
  (.033)  (.057) 
     
     𝑌ത  .264  .276 
     
HSGPA ≤ 3.28 5,473 -.009 1,574 .065 
  (.041)  (.096) 
     
     𝑌ത  .217  .187 
     
HSGPA > 3.28 5,734 .079* 3,117 -.054 
  (.047)  (.072) 
     
     𝑌ത  .312  .323 
     
HSGPA > 3.78 2,105 -.126* 1,357 -.112 
  (.067)  (.103) 
     
     𝑌ത  .364  .400 
     
Robust standard errors are reported in parentheses.  *, **, and *** denote statistical significance at the 
10, 5, and 1 percent-level, respectively.  Estimates are from difference-in-differences kernel matching 
performed with a bandwidth of h = .2 using the Epanechnikov kernel function.  We report estimates for 
students with below average or average high school GPAs (≤ 3.28), above average high school GPAs 
(> 3.28), and high school GPAs greater than one standard deviation above the mean (> 3.78).  𝑌ത 
denotes the baseline rate of STEM major choice by academic preparation. 
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APPENDIX E.  ALTERNATIVE BANDWIDTHS 

 
 

Table E1.  NMLLS kernel matching estimates with bandwidths of 0.1, 0.2, and 0.3; 1994-1999 

 STEM First Declared 

Group Obs. Estimate 

   
Full Sample   
   h = 0.1 11,207 .025 
   h = 0.2 11,209 .026 
   h = 0.3 11,210 .027 
   
GPA ≤ 3.28   
   h = 0.1 5,470 -.063* 
   h = 0.2 5,473 -.068* 
   h = 0.3 5,474 -.057 
   
GPA > 3.28   
   h = 0.1 5,732 .115** 
   h = 0.2 5,734 .121*** 
   h = 0.3 5,735 .119*** 
   
GPA > 3.78   
   h = 0.1 2,103 -.088 
   h = 0.2 2,105 -.063 
   h = 0.3 2,105 -.049 
   
Robust standard errors are reported in parentheses.  *, 
**, and *** denote statistical significance at the 10, 
5, and 1 percent-level, respectively.  Estimates are 
from difference-in-differences kernel matching using 
an Epanechnikov kernel function with various 
bandwidth parameters, h.  We report estimates for 
students with below average or average high school 
GPAs (≤ 3.28), above average high school GPAs (> 
3.28), and high school GPAs greater than one 
standard deviation above the mean (> 3.78). 
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Table E2.  NMLLS kernel matching estimates with bandwidths of 0.1, 0.2, and 0.3; 1994-1999 

 STEM Degree Earned 

Group Obs. Estimate 

   
Full Sample   
   h = 0.1 4,437 -.024 
   h = 0.2 4,438 -.012 
   h = 0.3 4,439 -.016 
   
GPA ≤ 3.28   
   h = 0.1 1,506 .156* 
   h = 0.2 1,507 .147 
   h = 0.3 1,508 .134 
   
GPA > 3.28   
   h = 0.1 2,929 -.045 
   h = 0.2 2,930 -.051 
   h = 0.3 2,930 -.065 
   
GPA > 3.78   
   h = 0.1 1,271 -.028 
   h = 0.2 1,271 -.061 
   h = 0.3 1,271 -.118 
   
Robust standard errors are reported in parentheses.  *, **, and 
*** denote statistical significance at the 10, 5, and 1 percent-
level, respectively.  Estimates are from difference-in-
differences kernel matching using an Epanechnikov kernel 
function with various bandwidth parameters, h.  We report 
estimates for students with below average or average high 
school GPAs (≤ 3.28), above average high school GPAs (> 
3.28), and high school GPAs greater than one standard 
deviation above the mean (> 3.78). 

 
  



 61

APPENDIX F.  ALTERNATIVE COHORTS 
 

 
Table F1.  NMLLS kernel matching estimates with alternative cohort sets 

 

 First Declared STEM Major 

Group Obs. Estimate 

   
Full Sample   
   1993 – 1999 12,788 .027 
   1993 – 2000 15,308 .013 
   1994 – 1999 11,209 .026 
   1994 – 2000 13,756 .012 
   
GPA ≤ 3.28   
   1993 – 1999 6,335 -.036 
   1993 – 2000 7,564 -.072 
   1994 – 1999 5,473 -.068* 
   1994 – 2000 6,725 -.097** 
   
GPA > 3.28   
   1993 – 1999 6,451 .091** 
   1993 – 2000 7,742 .079** 
   1994 – 1999 5,734 .121*** 
   1994 – 2000 7,029 .112** 
   
GPA > 3.78   
   1993 – 1999 2,364 -.025 
   1993 – 2000 2,860 -.018 
   1994 – 1999 2,105 -.063 
   1994 – 2000 2,601 -.054 
   
Robust standard errors are reported in parentheses.  *, **, and 
*** denote statistical significance at the 10, 5, and 1 percent-
level, respectively.  Estimates are from difference-in-differences 
kernel matching using an Epanechnikov kernel function with 
various freshmen cohorts included.  We report estimates for 
students with below average or average high school GPAs (≤ 
3.28), above average high school GPAs (> 3.28), and high 
school GPAs greater than one standard deviation above the mean 
(> 3.78). 
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Table F2.  NMLLS kernel matching estimates with alternative cohort sets 
 

 Earned STEM Degree 

Group Obs. Estimate 

   
Full Sample   
   1993 – 1999 4,932 -.024 
   1993 – 2000 5,953 .001 
   1994 – 1999 4,438 -.012 
   1994 – 2000 5,466 .002 
   
GPA ≤ 3.28   
   1993 – 1999 1,712 .165* 
   1993 – 2000 2,037 .165** 
   1994 – 1999 1,507 .147 
   1994 – 2000 1,836 .155* 
   
GPA > 3.28   
   1993 – 1999 3,219 -.068 
   1993 – 2000 3,915 -.040 
   1994 – 1999 2,930 -.051 
   1994 – 2000 3,629 -.034 
   
GPA > 3.78   
   1993 – 1999 1,400 -.104 
   1993 – 2000 1,711 -.083 
   1994 – 1999 1,271 -.061 
   1994 – 2000 1,581 -.062 
   
Robust standard errors are reported in parentheses.  *, **, and *** denote statistical 
significance at the 10, 5, and 1 percent-level, respectively.  Estimates are from difference-
in-differences kernel matching using an Epanechnikov kernel function with various 
freshmen cohorts included.  We report estimates for students with below average or average 
high school GPAs (≤ 3.28), above average high school GPAs (> 3.28), and high school 
GPAs greater than one standard deviation above the mean (> 3.78). 
 


