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Abstract

This paper presents research on enhancements to the estimation of CPI rent price inflation in New
Zealand. Two aspects are explored:

o Using government administrative data to replace the need for a sample survey
¢ A multilateral model to improve estimates of ‘pure price’ inflation

Both survey and administrative datasets provide a longitudinal panel of dwellings, dynamically
updated to reflect market changes. This type of data is well suited to fixed-effects regression models
to estimate changes in the price of rent, controlling for changing dwelling quality. We empirically
explore the sensitivity of these models to data window length and index-chain alignment. Using the
findings from length-alignment simulations and product life-cycle diagnostics we suggest a suitable
window length and splice method to generate estimates in real-time, as additional data becomes
available, with and without a ‘no revision’ constraint.
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Introduction

For more than two decades New Zealand has had two official sources of rent price statistics (Figure
1); a survey of landlords run by Stats NZ, and administrative rent data held by the Ministry of
Business, Innovation and Employment (MBIE).! The survey is used to produce a quality-adjusted
price index; the ‘actual rental for housing’ component of the Consumers Price Index (CPI) and
Household Living-costs Price Indexes (HLPIs). The administrative data — generated as a by-product
of regulations to lodge tenancy bonds (deposits) with MBIE’s Tenancy Services — generates average
rent prices which can be disaggregated to much finer regional breakdowns and split to finer temporal
frequency (monthly, rather than quarterly).

Figure 1
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In this paper, we develop a new rent price inflation estimator using a multilateral model to control
for changing composition and quality of rental dwellings. Applying the same model to both datasets,
we find that differences in the timing of recorded price change, appear short-lived and result in only
a small impact on cumulative inflation. Short-run differences look to reflect rental ‘stock’ vis-a-vis
rental ‘flow’ price inflation, for the survey and administrate data respectively. We discuss which
approach may be preferred from both conceptual and practical points of view.

Following Bentley and Krsinich (2017), we investigate an expenditure-weighted fixed-effects regres-
sion, with dwelling-specific controls. Sensitivity to design choices of data window length (temporal
sample) and index-chain alignment are assessed empirically. We discover that the data window
length used has a sizable impact on the estimates of cumulative rent price inflation. Using statistics

!Formerly held by the then Department of Building and Housing.



on the frequency of price observations, and on pragmatic grounds, we suggest a suitable window
length for this data that aims to strike a balance between transitivity and characteristicity.

Rent price inflation

Rent (actual rentals for housing) is one of the most important components of the CPI & HLPIs. It
is about 10 percent of the CPI by expenditure weight. For households who pay rent, the proportion
of their expenditure on rent is typically 30-40 percent. Figure 2 shows the typical proportion of
expenditure on rent by some household groups.?

Figure 2

Rent is a significant expenditure for some households
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Beyond their significance in aggregate price indexes, rent statistics are of considerable public, and
public policy, interest.

Data generation

Administrative data: Tenancy Bonds, MBIE

Landlords can ask tenants to pay a monetary bond as security when they move into a property.
Landlords who charge a bond must lodge it with MBIE’s Tenancy Services within 23 working days.
The Bond lodgement form (which can be completed online or by post) includes a requirement to
state the weekly rent payment. Other data captured includes the dwelling address, dwelling type
(such as room, flat, house), and the number of bedrooms. A unique property ID is created as part
of the administrative process.

The dataset used for this analysis covers bonds lodged 1 Jan 1993 — 31 Dec 2017; 100 quarters; 25
years. It contains 4.1 million price observations, for 1 million unique properties. An average of 7.5
(median of 6) price observations per property. Stats NZ (2015) explains the dataset further.?

Bentley and Krsinich (2017) assessed the coverage of the Tenancy Bond data and concluded that
the data appears reasonable compared with the New Zealand Census of Population and Dwellings.

2These are the HLPI group ‘democratic’ expenditure weights.
3Disaggregated statistics from this source are released monthly as Open Data (MBIE, 2018).



Miller, Suie & Bycroft (2018) found near identical distributions for weekly rent amount, number of
bedrooms, and sector of landlord, using Census and Tenancy Bond data. They conclude “... we
see good consistency between the tenancy bond variables and the census ... The concepts used in
the tenancy bonds are consistent with the statistical standard used by the census for each of the
housing variables. Levels of missing data for tenancy bond variables are low, and comparable with
the census levels of missing data.”

Survey data: Quarterly survey of landlords, Stats NZ

Current data collection for the CPI is a longitudinal postal survey of landlords, run continuously
since 1998 Q3. The sample size is about 1,200 landlords; 2,400 dwellings (see Figure 3). The survey
population is all identified rented dwellings within the sampled geospatial areas (meshblocks). The
survey was designed based on the 1996 Census of Population and Dwellings. A scoping questionnaire
was sent to all dwellings in the sampled areas to identify in-scope rental dwellings, which have been
surveyed every quarter since. Furnished dwellings are excluded. Within the sampled meshblocks
new rental dwellings are identified (from the Tenancy Bond data described above) and the landlords
are birthed into the survey. This birthing process was mothballed for 5-years between 2001-06,
which resulted in a steadily declining sample size until the process was reinstated in 2006 Q2 (Stats
NZ, 2008).

Non-response in a given quarter is imputed by carrying forward the last known rental value. For
persistent non-response, the value is carried forward for five quarters before the non-respondent is
assumed to be a ‘death’ and is removed from the sample (Krsinich, 2009).

Figure 3
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The datset used for this analysis covered the period 2000 Q2 — 2017 Q4; 69 quarters, survey data
for two quarters (2001Q2 and 2012Q2) were missing. It contains 143,000 price observations, for
7,650 unique properties.

Developing a model

Current method: bilateral matched-sample

Since 2000 Q1 a matched-sample approach has been used to control for the changing quality of
the stock of rental dwellings. The matched-sample average price change is calculated for region
by dwelling-size strata,® which are aggregated, to total New Zealand, using expenditure weights
(updated 3-yearly consistent with the rest of the CPI).

In 2008 concerns were raised that the matched-sample approach might bias the index (downwards)
since the approach excludes price change associated with newly rented dwellings (as these are
unmatched in a bilateral index). A regression fixed-effects model (of the type proposed in this
paper) was used by Krsinich (2009) to investigate the likely magnitude of the bias. Using the survey
data for 2000-08, she concluded that “the current estimation method does well at controlling for
compositional change” and “the restriction of the sample [to a bilateral matched-sample] is not
biasing the price measurement to a level of any practical significance”. With the passing of time,
additional data is now available to investigate the use of longer rolling windows (and index-chain
positions). Importantly, since June 2006 the survey data is unblemished by the reduced longitudinal
match rates caused by the mothballed birthing process. The administrative data provides another
dataset to triangulate our findings.

Property fixed-effects regression

There is growing consensus that multilateral models are the best approach to measuring inflation
(see, for example, ABS (2016), Diewert & Fox (2017)). The CPI Manual (ILO et al, 2004) is being
updated to reflect this paradigm shift. However, there is not yet international agreement on which
multilateral methods are best suited to estimating inflation from different types of data.

The time dummy hedonic approach to constructing quality-adjusted price indexes is well-known
and discussed in the CPI Manual (ILO et al., 2004, p382). In the absence of explicit quality
characteristics (beyond location, number of bedrooms, and property type) fixed-effects regression
(1) has been suggested for longitudinal data of prices. This approach is known as the Time Product
Dummy (TPD) method, named after the Country Product Dummy (CPD) model proposed by
Summers (1973).

The estimating equation is:

N-1

T
Inp =a+> 6'Di+ > vD;+el (1)
t=1 =1

“Broad region (Auckland, Wellington, Rest of North Island, Canterbury, Rest of South Island) by number of
bedrooms (1,2,3,4+)



where, p! is the price p of property, i, at time, ¢; D! = 1 if a price for property, 4, is observed at
time, ¢, and = 0 otherwise; D; = 1 if the observation relates to property, 7, and = 0 otherwise; a,
8¢ and ; are regression estimates and e! is an error term; dummies for item N and period 0 are
excluded to identify the model.

The index is derived from the estimated parameters on time; price change between period 0 and
period ¢ this can be expressed as:

Pt = exp(ot) (2)

Krsinich (2016) & Aizcorbe, Corrado and Doms (2003) suggest TPD is preferable to a time dummy
hedonic approach, even if detailed characteristics are available. Krsinich (2016) showed that the
TPD method is the same as a Time Dummy hedonic if all time invariant quality determining
characteristics (and the interaction of these) are included in the regression. Aizcorbe, Corrado and
Doms (2003) state the advantages of the TPD approach as:

e does not impose a particular functional form

o does not place any restrictions on the relationship between products and characteristics (as
full interactions are implicitly included)

e 1o need to choose characteristics

« fixed-effects can provide more stable parameter estimates

Ivancic, Diewert and Fox (2009) note that the method can be used to produce standard errors of
the estimates, and Krsinich (2009) remarked that the regression controls for both observed and
unobserved property characteristics.

The fixed-effects regression, by definition, assumes that property characteristics (and importantly
consumers relative valuation of these) is constant across time. It could be argued that this assumption
is very restrictive, or even unrealistic, particularly as the time interval between ¢ and ¢ 4+ 1 increases.
However, as noted by Silver (2016, p19), something has to be held constant to separate price and
quality change to estimate ‘pure’ price inflation. One way to consider this constraint is that it
controls for the counterfactual — how much would prices have changed if quality was constant —
to estimate inflation, rather than an assumption that needs to reflect reality. In reality, price and
quality are insoluble.

Model weights

Diewert (2004), in the context of the Country Product Dummy model, suggested that Weighted
Least Squares (WLS) should be used to reflect the economic importance of observed prices. Ivancic,
Diewert and Fox (2009) applied this approach in the temporal context, weighting each observation
by the square root of its expenditure share. We follow suit, noting that this was found to result in
numerically similar estimates to those using OLS. This is consistent with de Haan and Krsinich
(2014) who state that, from an econometric point of view, Ordinary Least Squares (OLS) would
seem appropriate assuming the variance of the errors is constant (homoscedasticity). We also note
that within quarters each price observation relates to a unique property, so the OLS model may
be considered a ‘democratically weighted’ price index, as used for New Zealand’s HLPIs (Bentley,
2016).



Refining the model: data window length and index-chain alignment

A natural starting point to estimating model (1) may be to use all the data available, across all time
periods. A criticism of this approach is that the estimate of the most recent period-on-period change
is partly dependent on all other time periods, including the distant past. The term ‘characteristicity’
has been used to describe the influence of data in distant time periods on the comparison at hand
(see Caves, Christensen and Diewert, 1982). The less influence distant time has, the greater the
characteristicity.

Characteristicity is often noted from a real-time perspective. For multilateral models, as additional
periods of time occur, and are appended to the data, estimates for all period-on-period changes get
updated (revised). Real-time estimation also leads to consideration of temporal sample-size equality
— the number of time periods (the time sample) used to estimate each period-on-period change. A
natural starting point here may be to allow the data, including the number of time observations, to
grow. Such an approach can be thought of as an expanding window of data (Chessa, 2016). Yet,
this leads to a non-uniform temporal sample being used for estimation.

Characteristicity can be increased by estimating the model based on a temporal subset, or ‘window’,
of data. Using a window of fixed length ensures temporal sample equality, as the same number of
time periods are used for each period-on-period estimate. Greatest characteristicity can be achieved
by considering data windows of the same size as the period-on-period change to be estimated.
That is, to use bilateral methods. However, chained bilateral methods (bilateral estimates chained
together over time) have a big disadvantage of not being transitive. Estimates of price change
between chained time periods don’t necessarily equal those from a bilateral comparison. A severe
consequence of non-transitivity is chain drift bias (see Ivancic, Diewert and Fox, 2009).

Within a given data window the property fixed-effects estimates will be transitive. To strike a
balance between characteristicity and transitivity a chained rolling window, of fixed length, will be
used.

Using both administrative and survey data, we find the choice of data window length can have
a huge impact on estimates of cumulative inflation. A range of estimates from 55 percent (data
window length of 3 quarters) to 127 percent (window of 90 quarters) were found for total inflation, in
the 25-years to 2017 Q4, using the administrative data (Figure 4). A similar spread was discovered
for the survey data — see Appendix A.



Figure 4

Impact of data window length
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Choosing a data window length

There is a lack of consensus on approaches to determining appropriate data window lengths and
index-chain alignment. The Handbook on Residential Property Prices Indices (Eurostat et al., 2013)
suggests choosing a window length that “yields ‘reasonable’ results”, but appears silent on how best
to determine reasonable. Drechsler (1973) noted that “characteristicity and circularity [transitivity]
are always ... in conflict with each other”. de Haan (2015a) observed that “It is likely that the
quality-adjusted prices from the TPD model approximate the quality-adjusted prices from the
hedonic model better as the sample period grows and the number of matches for a particular item
in the data increases. On the other hand, we do not want the sample period to become very long
because this conflicts with the underlying assumption of fixed characteristics parameters. So there
is a trade-off, but it is difficult to tell what the optimal sample period would be.” Diewert & Fox
(2017) suggest that the “longer the window length is, the more likely it is that substitution bias will
increase”.



Arguments in favour of:

Shorter window Longer window
Greater characteristicity Greater transitivity
Allows model parameters to change, More infrequent price
reflecting changing quality and consumer observations included
preferences

Minimises substitution bias Improved model fit

Ivancic, Diewert and Fox (2009) choose a window length of 13 months “as it allows for strongly
seasonal commodities to be compared”. It is noted they had high frequency scanner data, and
only 15 months of data which limited their choice of maximum window length. Stats NZ and the
Australian Bureau of Statistics (ABS, 2017) are using 9 quarter windows for consumer electronic
and supermarket scanner data respectively. Silver (2016), in the context of property prices, notes
that “a 10-year window ... with valuations of characteristics held constant may stretch credibility”.

Product life-cycle diagnostics: Price observations per property

A key consideration for determining a suitable data window length is the number of price observations
per property. At least two price observations are needed for a property to have an impact on the
estimated inflation rate. Since the fixed-effects approach is a longitudinal methodology the model
will fit the data better as the number of observations increase.

Figure 5

Price observations per property
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To be a multilateral method at least 3 observations are needed. This condition is not required for
every property, yet the greater the proportion of properties with multiple observations the more
representative the data window will be of the rental population. This consideration may lead us to



consider a minimum data window length of 6 years, so the median number of price observations is
at least 3 (Figure 5). Looking at the average number of price observations, there appears to be a
trend of decreasing frequency of observations (the average length of tenancies may be increasing)®
so a slightly longer window length may be desirable in case this trend continues.

Properties with only one observation (Figure 6) are of particular interest as they will not be included
in the fixed-effects estimator. We should therefore seek to minimise the proportion of properties
with only one observation, in case there is a differential rate of inflation for these properties.

Figure 6

Proportion of properties with only one price observation
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Index-chain alignment

To create a time series longer than the chosen window length, requires a choice of index-chain
position (Figure 7). Rolling multilateral windows will overlap for multiple time periods. The natural
choice, from a real-time estimation perspective, may be to link on the most recent overlap period.
That is, the end of the time series in the previous window and the lagged one period end of the
time series in the newer window — ‘end’ chain alignment. However, such an approach does not
allow for the effect of new products to be captured in the chained time series. Following Krsinich
(2016) an index-chain alignment at the most distant overlap period would alleviate this problem —
‘start’ chain alignment. Yet, by symmetry, this would create the opposite issue of not capturing
well the affect of disappearing products. de Haan (2015) suggests a ‘mid’ chain alignment and
Diewert & Fox (2017) suggested using the geometric mean of all possible overlaps — ‘mean’ chain
alignment.

The increasing average tenancy lengths observed in the data is partly a reflection of the dataset building-up over
time, as each historical long tenancy is required to become compliant with the bond lodgement legislation when a
new tenancy begins. Yet price-change frequency statistics for the survey data (Appendix B) also display evidence of
decreasing frequency of price change.
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Figure 7

Index—chain alignment options
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An advantage of the mean alignment is that for time periods where the desired window length is
unavailable (due to right or left censored data), the mean of all available window lengths can be
used as a best estimate. Hence, mean-chain alignment results in an estimate for all time periods.
For this reason, and small observed differences between index-chain alignment from our sensitivity
analysis (see Appendix C), we have chosen this option.%

Real-time estimation, with a ‘no revision’ constraint

An important additional consideration for a price index used for indexation of monetary payments
is to add a no revision of historical time series constraint. That is, the first published estimate is
never revised.” The constraint ensures that first published period-on-period change can be used for
indexation with the confidence that the official estimate is final.

The four index-chain align options (start, mid, end, mean), can be applied as a catch-up (revision)
factor in the latest period, as additional data become available. Using a revision factor in the latest
time period, helps to ensure that the long-run index is not biased should the model tend to be
revised in a common direction (up or down) as additional data becomes available (see Krsinich,
2016). The cost to this approach, is that the period-on-period change now reflects both the observed
change between the periods at hand, and a bias correction factor.

Preference for end index-chain alignment leads to a ‘movement splice’, where there is no
revision factor.

Preference for start index-chain alignment leads to a ‘window splice’, where the revision
factor is determined by the difference between the old and new estimates for the cumulative change
for the periods common to old and new windows. Revisions to estimates for a particular period will

S Appendix D, shows the impact of data window length regionally. This helps to demonstrate the link between the
number of longitudinal price observations and sensitivity to the temporal subset used as a data window.
"Or only in exceptional circumstances, such as a large data processing error.
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affect the latest period-on-period change until sufficient real-time has elapsed to generate data to
calculate the start index-chain aligned series.

Following the notation of White (2018), let Porp be the index computed over periods 1 to w and
let Pygw be the index computed over the window rolled forward one period, from periods 2 to
w + 1. The window splice index between periods w and w + 1 can be expressed as:

1
w,w+1 _ PqNUEW/P]%EW (3)

WindowSplice — w 2
PSp/FPorp
To explicitly see the revision factor we can rewrite this as:

Pw+1 Pw P2
PW,erl NEW NEW/ NEW (4)

WindowSplice = Duw w 2
PNEW POLD/POLD

where the first term is the movement splice estimate and the second term is the revision factor.

Preference for mid index-chain alignment leads to a ‘half-window splice’, where the revision
factor is determined by the difference between the old and new estimates for the cumulative change
for the periods belonging to second half of the common periods for old and new windows. Revisions
to estimates for a particular period will affect the latest period-on-period change until sufficient
real-time has elapsed to generate data to calculate the mid index-chain aligned series.

The half-window splice index can be expressed as:

pwtl w Pw/2
Pw,w+1 NEW % NEW/ NEW (5)

PNew PgLD/Pg[/i)

Hal fWindowSplice —

Preference for mean index-chain alignment leads to a ‘mean splice’, where the revision factor
is determined by the geometric mean of all possible overlaps.

1
w+1 w w t w—1
PU),erl _ PNEW % PNEW/PNEW (6)
MeanSplice — Pw pPw /Pt
NEW t=2 ~ OLD/~ OLD

For many macroeconomic purposes, a no revision constraint is likely to be unnecessarily restrictive
(see Silver, 2016, p20). Consistent with other macroeconomic statistics, publication of a revisable
price index who’s quality improves as more data becomes available is likely to be helpful to improve
understanding of the economy. Such a series could usefully be published alongside the non-revisible
official series. As a minimum it serves as a benchmark to understand the impact of including a no
revision constraint.

Consistent with our choice of mean index-chain alignment, we propose adopting a mean splice.
There was little observed difference between the revisable chained series and the non-revisable
spliced series (see Figure 8)

12



Figure 8
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Timing of recording price change

The final issue to be addressed is to consider the timing of recording price change. Rent price
changes are only observed in the bond data when tenancies begin, or a new bond lodgement form is
submitted (for example, if the landlord wants to increase the bond amount as well as the weekly
rent). In contrast, price changes are observed in the survey-sample approach whenever the rent
amount changes, regardless of whether this is a new or existing tenancy. By applying the same rent
price inflation estimator to both survey and administrative dataset, we can take a closer look at the
impact. If there was no difference in coverage or data quality between the two data sources, the
differences in price indexes would reflect only timing differences (and random sampling noise).

13



Figure 9

Impact of data source
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Looking at the cumulative inflation since 2006 (after the survey birthing process was reestablished)
the estimates are similar for both data sources (Figure 9). This suggests that despite an aging
survey design, and imperfect administrative data, both datasets are of reasonable quality (or at
least of similar quality). The lower rate shown in the survey data since 2015 is also reflected in a
comparatively lower average price increase (geometric mean) over the same time span.

Applying the same model to both datasets, we find that differences in the timing of recorded price
change, appear short-lived and result in only a small impact on cumulative inflation. Short-run
differences look to reflect rental ‘stock’ inflation for the survey data and rental ‘flow’ price inflation
for administrate data. We have tested this by running the model over a subset of the survey data,
limited to observations that were a change in price from the previous quarter. Shown in Figure 10,
the price-change-only survey data (labeled ‘survey - flow’) looks to reflect a flow measure, hence
closely track the administrative series.

Reasonable results were found using mass imputation on the administrative data to mimic a stock-
based measure (shown in the ‘administrative - stock’ series in Figure 10).® Current rent prices were
imputed each quarter by carrying forward the rent price recorded at the start of a tenancy (when
the bond is lodged), for a maximum of 2 years or until the tenancy ends. The 2 year cut-off is
intended to cease imputation beyond the typical duration of rent prices, since price changes that
occur within the length of a tenancy are not observed in the administrative data. Investigation
of the persistence of prices in survey data found an average duration of 1.8 years and a median
duration of 2.1 years. Sensitivity analysis of the imputation cut-off is shown in Appendix E.

8to reduce computational time a 20% sample of dwellings was used.

14



Figure 10

Impact of data source and concept
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Consistent with the findings of Bentley and Krsinich (2017) the flow measure shows relatively more
volatility and earlier identification of turning-points in the time series. This makes sense as the
information from newly lodged bonds reflects the current market price for rental properties. The
within tenancy rent price changes (captured in the survey, but omitted from the administrative data)
perhaps don’t reflect true market rent. They may reflect a discount for loyalty and cost savings to
the landlord compared with finding replacement tenants.

It is unclear which measure should be conceptually preferred for a CPI. Since the long-run inflation
rates appear similar the choice may not matter much for indexation of monetary payments. For
macroeconomic uses of the CPI, the added volatility of the flow measure may be acceptable if
this reflects market changes and allows for faster identification of turning points. Johnson (2015,
pl31), in the context of using rent price inflation for the rental equivalence approach to measuring
owner-occupiers’ housing costs, notes that the stock approach is currently used in the UK (and at
other national statistical institutes). He notes that arguments could be made for using the marginal
(flow) of rent depending on ‘the question that rental equivalence seeks to answer’.

15



Conclusions

The catalyst for this work was the tenancy bond Open Data released by MBIE. This enabled
public comparison of the change in average rent prices with the quality-adjusted counterpart, as
published for the CPI & HLPIs, albeit from a different data source. We find that much of the
observed differences between these series can be explained as biased quality adjustment resulting
from the use of a bilateral matched-model approach. Using a suitably specified multilateral model to
perform quality-adjustment, differences are much smaller and short-lived. Given relatively infrequent
changes in rent prices, compared with many retail prices, a relatively long data window (such as 32
quarters; 8 years) appears necessary to provide reasonable transitivity and property-level matches
and therefore minimise long-run bias.

Index-chain alignment and revisions due to additional data are important considerations for all
multilateral price models. Yet, these design choices have been found to be of less importance for
our rent price data compared with the impact of data window length. Following sensitivity analysis
we propose:

e in retrospect, windows can be chained using the (geometric) mean of all available estimates
e in real-time, the model can be updated with a mean splice to preserve historical time series,
with a ‘no revision’ constraint.

Employing the same model on survey and administrative data we have been able to focus on the
impact of stock versus flow measures of rent price inflation. We have been able to mimic a flow
approach on the survey data, by subseting the data to price-change-only observations. Likewise, a
stock approach has been modelled using the administrative data, by carrying forward the rent price
recorded at the start of a tenancy, for a maximum of 2 years or until the tenancy ends. This looks
to provide reasonable results in the absence of data on the actual rent payment amount each period.

The administrative data is a clear winner on cost and efficiency. Removing the need for a separate
(Stats NZ) survey of landlords would reduce operational costs, negate survey burden, and bring
consistency across the official statistics system, with a single authoritative measure of rent price
inflation in New Zealand. Series could be published monthly, with a fine regional breakdown.
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Appendix A: Sensitivity to data window length (survey data)

Figure Al

Impact of data window length
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It is noted that the model with a 2 quarter window is not the same as the published series. We
have not employed the survey weighting used for the official series (as the weights were not easily
obtainable). Additionally, we have not replicated ad hoc quality adjustment that is manually applied
for some properties that undergo ‘large’ renovations.
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Appendix B: Price change observations, using survey data

Figure B1

Price—change observations per property

Survey data

75 _25: L 2 2 4
- " 00000 Window
— 0000 start
50 _%E— 00000 decade
= o060 © 20005
== o690
25 = 2010s
— 2 2 2 ‘
L 2
0.0
5 10 15 5 10 15
Window length, years
Source: Stats NZ
Figure B2
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Appendix C: Index-chain alignment simulations

Figure C1
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Appendix D: Regional comparisons
Figure D1

Impact of data source: by region
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Figure D2

Impact of data window length, by region
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Figure D3

Impact of data window length, by region
Survey data,

percent change compared with average price-change observations per property
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Appendix E: Administrative data stock modelling: sensitivity to
carry-forward imputation length

Figure E1

Impact of data source and concept
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