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Abstract

This paper analyses the relation between optimal dam capacity and water man-
agement in a unified approach. Having extended a hydropower generation
model, we investigate the optimal dam capacity for multi-functional dams such
as providing infrastructure for industrial and households water use, conjunctive
use of hydropower generation and irrigation; storing water in the wet season for
use in the dry season, and mitigating flooding damages. Our optimal solution
shows that optimal dam capacity is characterized by the marginal benefits of
hydropower generation, the marginal costs of flooding damages, and the con-
straining factors. We also provide the implication of the optimal solution for
three real world cases of dam construction, i.e. for flood control, for irrigation

and for hydropower generation.
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1 Introduction

Dams have made an important and significant contribution to human develop-
ment, and the benefits derived from them have been considerable. Dams were
built to provide water for irrigated agriculture, industrial and domestic (house-
holds) use, to generate hydropower or to help control floods. Dams, however,
are not only built with a significant cost. Building dams also altered and di-
verted river flows, resulting in significant impacts on livelihoods, fishery and the
environment (Dugan et al., 2010; Beck et al., 2012). The latter impacts are
the so-called social costs. Often dams are built for the single purpose of water
supply or irrigation, but there is now a growing number of multipurpose dams
(Alais et al., 2017; Petheram et al., 2017). For example, electricity generation
is an important reason for building large dams in many countries, either as the
primary purpose or as an additional function such as regulating water use in
different seasons. As the demand for water is steadily increasing throughout the
world, there was a greater need for water supply, irrigation, flood control, nav-
igation, water quality, sediment control and energy. Decision-making on dam
capacity choice, therefore, should trade off different water uses and take into
account the possible adverse impacts.

As dams have been an important means of meeting needs for water and
energy services, optimal dam capacity for hydropower generation and its ef-
ficient operation are important!. Without knowing dams’ capacity, collapse
dams can not only disrupt the lives and lifestyles of people living in the reser-
voir area and of those dependent on this area, but also destroy their life?. In
this regard, Haddad (2011) studies capacity choice and hydropower genera-
tion in a deterministic model with two seasons from the perspective of the

dam operator. All social costs, including those for environmental externali-

1A dam is a cornerstone in the development and management of water resources develop-
ment of a river basin. Therefore, the choice of site and the most suitable type of dam play a
vital role for conserving biodiversity (Winemiller et al, 2016). In this paper, we consider dams
as water systems, whereas dam capacity as the total artificial capacity of water catchment of
its system.

2The estimates by the UN in Laos indicates that the Laos dam collapsed in July 2018
affects more than 10,000 people (CNA, 2018).



ties, are said to be incorporated in the building costs of dams and are as-
sumed to be linear. However, for the study of environmental issues concern-
ing dams and their operation this assumption is somewhat oversimplified. Our
main research questions are thus: what is the optimal dam capacity consid-
ering multiple purposes and including the possible social costs caused by ex-
ternalities? The aim of this paper is to study some externalities of dams
by extending the model of Haddad (2011) to explicitly incorporate the ten-
sion between the rivalry use of water and the social costs (e.g. flood dam-
ages).

We interest the following major economic functions of dam capacity building
in providing infrastructure for (i) industrial and households’ water use, (ii) hy-
dropower generation, (iii) flood damage mitigation and agricultural irrigation.
Therefore, we consider multiple functions of dams. Water use among different
users is rival, i.e. there is competition among industry and households, and a
hydropower generator. However, water use for irrigation and hydropower gen-
eration is non-rival or conjunctive, because irrigation water is withdrawn after
hydropower is generated. Furthermore, we also consider the seasonal variations
in water availability or inflows with paying attention to the rivalry use of water
and the social costs of dam in welfare program to derive the optimal dam ca-
pacity (cf Zhu and van Ierland, 2012). Our model is more explicit than Haddad
(2011) with respect to the details of the seasonal and distributional diversion
of water for human use. We view this paper complementary to Houba et al.
(2013), who perform a numerical analysis of such as a model that is calibrated
for the Mekong River. However, the Mekong River is just one specific case of a
wide diversity of realistic cases, which cannot inform policy makers in different
river basins about the economic issues in their specific basin management. Solv-
ing the model analytically gives some interesting results on the choices of dam
capacities under different specific cases of reality, such as dams solely used for
flooding control, for irrigation, or for hydropower generation. Our contribution
of this paper is to characterize the relations between optimal dam capacity and

water management under rivalry uses and externalities as well as providing the



implication for the real world cases in dam construction®.

The paper is organized as follows. The next section presents the basic model
that extends the model of Haddad (2011) in which dam capacity is endogenous.
Section 3 presents the general case of Pareto efficient dam capacity and its
operation. It also discusses the welfare costs of neglecting rivalry use and ex-
ternalities. Section 4 discusses the implications of the model results based on
three special categories of single purpose dams: a dam is used solely for flood
control, for irrigation and for hydropower generation, respectively. Concluding

remarks follow in the last section.

2 The Model

Following Haddad (2011), our model respects the hydrological basin reality.
Total water available is determined by seasonal precipitation or water inflows.
We distinguish two seasons, the wet season (w) and the dry season (d). There
is an option to build a dam with a certain capacity, denoted by D. The dam
is used as infrastructure (a reservoir) to provide end users such as industry and
households with water, and it is also used for hydropower generation and to
store water from the wet season, denoted by y, for usage in the dry season.
Due to evaporation losses and leakage from the dam, only dy, § € (0, 1), can be

1 Water availability, including inflows and river flows,

used in the dry season.
determine water usage in each season 7 = w, d. Water users are aggregated into
three categories of representative consumers: Industry and households, irrigated

agriculture and a hydropower generator.

The water balances
Our model extends Haddad (2011) by including other water uses (e.g. indus-

try and households, irrigation) and flood damage. The river basin is presented

3In the Policy Forum “Balancing hydropower and biodiversity in the Amazon, Congo, and
Mekong“ (Science 351, 128-129, 2016), Winemiller et al. gave a very good summary of the
impact of dam construction. They also indicated that basin-scale planing (via dams) is needed
to minimize impacts in mega-diverse rivers. Our model then can be applicable to the Amazon,
Congo and Mekong.

1Haddad (2011) assumes § = 1.



in Figure 1. In the wet season w, inflow f,, can be spent on consumptive use by
industry and households x,,, storage y for the dry season, hydropower genera-
tion ¢, that is reusable further downstream, and pass-through by the dam to
downstream. River outflow from the dam o,, consists of ¢, and pass-through
that runs directly to downstream and might cause flood damage. In the dry
season d, inflow f; and the fraction of stored water dy can be spent on water
use x4, hydropower generation gg that remains available further downstream,
and pass-through by the dam to downstream. River outflow from the dam oy
can be used either for irrigation 44 (assuming an irrigation infrastructure that
is independent of capacity D) or runs to downstream. This imposes iy < o4.

Formally, upstream’s water balances® are given by

Tw+Y+qw < fu, (1)
Toty+tow = fu (2)
Tit+dqa < fat0y, (3)
Ta+oqa = fa+ 0y, (4)

g < 04 (5)

In Figure 1, both o, and o4 are expressed as the residuals from inflow minus
water use. The total use of water must not exceed the available dam capacity

D. Dam capacity D imposes the restrictions

Tw+y+qo < D, (6)

zqg+qa < D. (7)

This completes the description of the water balances.

Benefits and costs
There are three water users that create economic value. Consumptive use by
industry and households permanently remove amounts of water in both wet and

dry seasons. The economic value is v, (z,), a concave function with satiation

5This formulation extends the model in Haddad (2011) to include the industrial and house-
holds’ water use.
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Figure 1: Seasons, storage and water uses.

point T, > 0. Both, x,, and x4 are externalities for downstream, as is storage
y. The net benefits from hydropower in season 7 are h; (¢, ), a concave function
with satiation point ¢, > 0. The net benefits from irrigation in season d are
aq (iq), a concave function with satiation point 74 > 0.

The costs of building dam capacity D including costs for storing water are
¢(D), a convex function with ¢/ (D) > 0.5 These costs include the annuities of
the capital costs, the operation and maintenance costs and evaporation losses
(as storage costs). River flows also involve costs associated with flooding in
the wet season. The costs of flood damage are ¢, (0, ), a convex function with
¢, (04) > 0. This implies that the flood damage costs are positive and increasing
as flooding would cause more economic loss’ .

The annual economy’s welfare function u (T, Td, Guw, 9d, id, D, 0w, 04) 1S given
by

Uy (Tw) + va (2d) + hw (Gw) + ha (ga) + aq (ia) — ¢ (D) — cw (0w) . (8)

From this objective function, it is clear that our model includes flood damage,

6Haddad (2011) assumes constant costs of building dam capacity.

"The dynamics of flooding would be substantially controlled by the dams, and it is reason-
able to assume that the marginal costs increase as the extreme floods cause more economic
loss, given the zise of flooded areas..



the benefits from consumptive use and irrigation, and allows nonlinear building
costs. This completes the description of costs and benefits of dam capacity

building and water management (allocation among different users).

3 Pareto efficient management

In this section, we investigate Pareto efficient management of dams. Because
the derivations are quite technical we defer these to the appendix. In what
follows we discuss the main results.

Pareto efficient management internalizes all externalities by maximizing the
welfare function (8). After substituting out the flow variables o,, and o4 from
(2) and (4), we obtain the following welfare optimization program:

max
T, dsGwqdstd, DY

Oy (Tw) + va (Ta) + hw (qu) + ha (qa) + aa (ia)  (9)

7C(D)7Cw (fwfxwfy)7

s.t.
Ty +Y+qw < fu, (Pw)
T4+ qq < fa+dy, (pa)
iq < fa+ 0y — xa, (Aa)
Ty +Y+qw =< Da (:uw)
Ta+ qq < D, (1q)

where all symbols between brackets denote shadow prices.

The most realistic scenario is that D < f,,, which is the case in most south-
east Asia countries. Therefore, the fourth constraint holds with equality, and we
substitute y = D — x,, — gy in the first and fourth constraints. This eliminates
these two constraints and we will solve the reduced optimization problem. Due
to the assumptions we have made on the benefits and costs of water use and
dam capacity building, the resulting welfare optimum is unique. In our analysis,
we only characterize the case in which all variables x.,, T4, qw, 94, tq and D
are positive in the optimum. We do so, because it is the most interesting and
relevant case and this limits the number of possible boundary cases to discuss
in this section. Other extensions will be discussed in the concluding remarks.

Our first result is the following Proposition.



Proposition 1 In the unique welfare optimum of (9), it holds that

Uy (B0) = hy (qw) = ¢ (fu + qw — D), (10)

vg(xa) = hy(qa) + ag (ia), (11)

iq min {74, ga} and \g = al; (iq) .

Moreover, hl, (qw) > ¢y (fw + quw — D) and gu < G-

Proof. See the appendix "Proof of 3.1". m

Proposition 3.1 reflects that the use of dam capacity in the wet season for
hydropower generation is rival to water that is used first for the consumptive use
of industry and households, and then for irrigation. Condition (10) illustrates
the rivalry use of water in the wet season. The marginal benefit of consumptive
use by the industry and household sector should be equal to the marginal ben-
efit of hydropower generation after deducting the incremental costs of its flood
damage, i.e. the cost of its negative externality. Since the marginal benefit of
consumptive use is nonnegative, the marginal benefit of hydropower generation
should exceed the incremental costs of the flood damage hydropower genera-
tion causes. Satiation of consumptive use in the wet season can only occur if
the marginal benefits of hydropower generation equal the marginal cost of flood
damage in this season. Satiation of hydropower generation in the wet season can
never occur, because this activity causes flooding as an externality. Therefore,
qw < @y has to hold.

Similarly, condition (11) illustrates the rivalry use of water in the dry season
between consumptive use and irrigation. Because water for irrigation first passes
the dam before it can be used, this part of the water can be utilized twice, namely
hydropower generation before irrigation takes place. In other words, hydropower
generation augments the benefits from irrigation. Then, condition (11) states
that the marginal benefit of water used by the industry and household sector
should be equal to the marginal benefit of hydropower generation augmented
by the incremental benefits of reusing the water for hydropower generation for

irrigation. Obviously, v/, (xq) > @ (iq) and v} (xq) > hl(gq). Satiation of



consumptive use in the dry season can only occur if both hydropower generation
and irrigation are satiated as well in this season. The fact that irrigation water
first passes the dam implies iq = min {74, ¢4 }-

For the crucial shadow prices pq and g , we derive the following result.
Proposition 2 In the unique welfare optimum of (9), it holds that

oy (qu) < ¢ (D) < hy, (quw) + g (a)

and (g, pa € [0, hy (qa)] are given by

Hg = Cl (D) - hiu (qu) )

Pa = hil(qd)+hgu(Quf)_C/(D)-

Moreover, py = 0 and pg = h/;(qq) if and only if ¢ (D) (qw). Similarly,

g =N (ga) and pg =0 if and only if ¢ (D) = hl, (qw) + /; (qq)-

Proof. See the appendix "Proof of 3.2". =

Although there are many economic activities and externalities related to
water, the shadow prices pg and p,; can be fully characterized by the mar-
ginal benefits from hydropower generation and the marginal costs of dam ca-
pacity. These shadow prices hint at that externalities do not play a role, but
one should realize that hydropower generation causes externalities (e.g. flood
damage downstream), and such activity can be regarded as the gateway through
which external economic values enter the dam facility. This becomes apparent

if Propositions 1 and 2 are combined, we can rewrite the shadow prices as

pa = v, (2w) + 0 (xa) + ¢, (fu + qw — D) — ag (ia) — ¢ (D),

Hqg = cl(D)_v:u(xw)_c/w(fw‘i‘Qw_D)'

Hence, externalities of dams such as flood damage or less water for irrigation
do enter these prices.

Note that the existence of an optimal welfare solution implies that the
shadow prices in Proposition 2 are nonnegative. Hence, the marginal bene-

fits from hydropower generation in the wet season are bounded by the marginal



costs of dam capacity, i.e. hl, (q,) < ¢’ (D) has to hold in the welfare optimum.
This suggests that marginally expanding dam capacity further for solely increas-
ing this activity should not be beneficial. Although externalities seem absent
from h!, () < ¢ (D), these can be brought in through Proposition 1 to ob-
tain v, (Tw) + ¢, (fw + qw — D) < ¢ (D). Marginally expanding dam capacity
further for increasing consumptive use, and thereby marginally reducing flood
damage, should not be beneficial either. Furthermore, combining Propositions

1 and 2, we obtain

Chy (fu + qw — D) < ), (qu) < (D).

From these inequalities, it is immediately clear that the marginal costs of flood
damage should be lower than the marginal costs of expanding dam capacity.
The solution to (9) depends upon whether the water availability (3) or dam
capacity (7) or both restrict water use and hydropower generation in the dry
season. Water availability in the dry season is the binding constraint®, whenever
(1=0)D + 6 (zw + qu) > fa, which we call water scarcity.
In what follows, we report for each case the nonlinear system that charac-

terizes the optimal solution.
Case 1: Water availability is the constraining factor in the dry season

Recall that in this case we have (3) is binding and (7) nonbinding. Define

Ty Ty Gays 4, 1y and D* as the unique solution to the following non-linear

system:
U;u (mw) = h& (qw)fciu (waFQw*D)a
vg(za) = hy(ga) +ay(ia),
Z’d = min {Eda Qd} )
vy, (zw) = o0v))(za), (12)
(D) = hy(qw),
either g4 = fa+0(D -2y —quw) —Tq, OF qq=qGq-

Obviously, the third line obeys the condition h/, (g.,) < ¢’ (D) of Proposition 2.
Water availability in the dry season, given by fq+ 6 (D — x4 — qu), constrains

8Note that the nonlinearity of the functions excludes a closed-form solution.

10



the three categories of water use in this season. Note also that the case § < 1
is qualitatively similar to the case 6 = 1. The unique solution to this system

characterizes all values for this case.

Proposition 3 If (1 —6) D* + 6 (z, + q)) > fa, then welfare optimal water
management is given by building dam capacity D*, industrial and households’

water use x

w

and x};, hydropower generation q;, < G, and qj;, and irrigation iq =

min{zq, fg + 0 (D* — z}, — q};) — x5}. Moreover, pi; =0 and p; = h!; (¢}) > 0.

Proof. See the appendix "Proof of 3.3". m

Note that hl, (¢) = ¢ (D) > 0 once more implies ¢q,, < . Furthermore,
since ig = 74, and xq = T4 and z,, = T, implies ¢’ (D) = ¢, (fuw + qw — D) > 0,
the first case includes the special case in which all but one satiation levels are

reached. In this special subcase, D and ¢, solve the smaller subsystem
c (D) = h;u (qw) and C'/w (fw +qw—D) = hiu (qw) -

Such solution is fully driven by reasons for flood control: all pass-through from
the dam in the wet season is equal to zero and all outflow from the dam o, is
used for hydropower generation. All other water is either consumed in the wet
season or diverted to the dry season.

In general, after several substitutions, we obtain
¢ (D) = ¢ (fuw + qw — D) + 8 [hy (qa) + ag (ia)] - (13)

The left-hand side expresses that building dam capacity for additional water
storage reduces flood damage and fraction § of this water becomes available for
the double utilization of hydropower generation and irrigation. Note that ¢ can
be seen as a sort of discount factor that delivers the net present value of future
utilization in the dry season. All these marginal benefits should be equal to the
marginal cost of expanding dam capacity.

The optimal water management can be decentralized by having seasonal wa-
ter prices, and personalized taxes or subsidies per sector. In the wet season, in-
dustrial and households, and hydropower generation should all be charged a wa-

ter price of v/, («7) and additionally the generator should be taxed ¢!, (f, + ¢, — D*)

11



per unit of water because his activity increases the damage of flooding. So, in to-
tal he pays vl, (zX)+cl, (fw + ¢, — D*) = h!, (¢%) per unit of water. The irriga-
tion sector is charged a water price of max {0, a};, (fg+ 0 (D* — a2, — q) — z3)},
which might be zero if the river flow in the dry season o4 is large enough. The
reason is that irrigation is modelled as upstream’s last water user, which can be
reinterpreted as a legal system with hierarchical water users where industrial,
households and the hydropower generator are served before the agricultural sec-
tor. In such a setting, a reduced water price for irrigation compared to the water
price set for other sectors can be theoretically justified on the grounds of Pareto
efficiency. Such practice is observed in many countries, see e.g. Cornish et al.
(2004). Building dam capacity can also be decentralized by offering the dam

operators a price of
(D7) = by, () = vy, (@7,) + €y (fw + a5, — D7)

per unit of capacity installed. In case the dam operator is the hydropower
generator who also charges and collects the sales directly from industry and
households, then the water management authority has to subsidize hl, (¢%) —
¢, (fw + g, — D*) per unit of capacity built on top of the dam operator’s sales
against price v}, (z¥) in case of a uniform price for industry, households and

hydropower generation.
Case 2: Dam capacity is the constraining factor in the dry season

Recall that we now have that (7) is binding while (3) is nonbinding. The
optimal Z,, T4, Guw, G4, 2q¢ and D are the unique solution to the following non-

linear system:

”U;) (l‘w) = hiu (Qw) —C;U (fw+Qw _D)a
vg(za) = hy(ga) +ay(ia),
iq = min{74,qa},
Uy (Tw) = 0vg(2a) — hy(qa)], (14)
(D) = hy(qw)+hylaa),
either qq = D —ay, or qq = Qq-

12



Since h; (ga) > 0 the third line obeys the condition k), (¢,) < ¢ (D) of Propo-
sition 2. Again, the case § < 1 is qualitatively similar to the case 6 = 1. There
are three striking differences between (12) and (14). The obvious one is the
presence of a different binding constraint that defines each case. A more in-
teresting difference is ¢ (D) = hl, (quw) versus ¢ (D) = hl, (qw) + h);(ga). The
latter implies that an economic pressure for expanding dam capacity is driven
by hydropower generation in both seasons, whereas the former only hydropower
in the wet season provides such a pressure. Of course, the term %/, (gq) drops
out in case gq = g4 holds in the optimum. Another difference between (12) and
(14) is v), (zy) = 0V (zq) versus v, (xy) = 0 [V (zq) — R} (qa)]-

The unique solution to system (14) characterizes the optimal values for this

case.

Proposition 4 If (1 —9) D+6 (Zw + qu) < fa, then the welfare optimal water
management is given by building dam capacity D, industrial and households’
water use T, and T4, hydropower generation G, < Gu and {q, and irrigation

iq = min {74, Gq}. Moreover, pg =0 and f1; = h}; (§q) > 0.

Proof. See the appendix "Proof of 3.4". m

In this case, ¢ (D) = hl, (qw) + k) (gs) > 0, the marginal costs of dam
capacity is equal to the sum of the marginal benefits from hydropower generation
in both seasons. The optimal dam capacity should be able to generate the
optimal amounts of hydropower in both seasons. As in Case 1, we obtain (13)
from (14) with a similar interpretation.

The optimal water management can be decentralized by using seasonal water

!/
w

prices. Asin Case 1, industry and households are charged by v/, (&,,) in the wet
season, and the hydropower gencrator by v, () +c), ( fw + Gw — ﬁ) However
in the dry season, the generator should be charged by v/, (&4) but subsidized by
al, (&4) because the water that passes through the dam can be used by irrigators

who are willing to pay a; (£4) per unit of water.

Case 3: Water availability and dam capacity are the constraining factors in the

dry season

13



In this case, both (3) and (7) are binding. Define py, iy, Tw, Zd, Gu, dd, td

and D as the unique solution to the following non-linear system:

U{U (xw) = hiu (qw) _Ciu (fw + quw _D)v
vg(za) = hylaa) + ay(ia),
id = min {74, g4},
e () — 6 (@),
(lia)D = fdid(ww‘kqw)a
cither ¢qq = fa+6(D -2y —quw) — x4, Or qq=qqand pu;=pq=0.

(15)
From the fourth line, we deduce that the case § < 1 is qualitatively different from
the case 0 = 1, because under ¢ = 1 this line only ties two variables (z, ¢y ) to
fa leaving D unrestricted and otherwise three variables are tied up. As such, we
obtain insights for § < 1 that are qualitatively different from Haddad (2011).
Note that in case of ‘or’, u; = 0 pins down the solution further than the ‘either’
case. In fact, the case of ‘or’ coincides with the boundary of Case 1 where the
condition defining Case 3 holds. It can be shown that the boundary of Case 2 is
also captured by Case 3. Therefore, this case is the intermediary case between
Case 1 and Case 2. Thus, system (14) completes the characterization of the

unique solution for this case.

Proposition 5 If (1 —6) D+ 6 (Z, + Guw) = fa, then the welfare optimal water
management is giwen by building dam capacity D, industrial and households’
water use T, and T4, hydropower generation ¢, < Gy, and qq, and irrigation

1g = min {7,1, Q'd}

Proof. See the appendix "Proof of 3.5". =
In this case, h/; (gq) + hl, (gw) > ¢’ (D) > k!

w

(¢w)- This means the marginal
benefits from hydropower generation in the two seasons should not be smaller
than the marginal costs of dam capacity. Considering the constraints from the
water availability and dam capacity, we should ensure that the marginal costs
of dam capacity should not be smaller than the marginal benefit of hydropower

generation in the wet season. After several substitutions in (15), we obtain
¢ (D) = d, (fuw + quw — D) + 8 [hg (qa) + ag (ia) + pql - (16)

14



This reduces to (13) for the ‘or’ case. In case hl, (q,) < ¢ (D), the ‘either’ case
implies 1y > 0 and ¢ (D) > ¢, (fw + qw — D) + § [1; (qa) + a; (ia)]. Therefore,
there are stronger incentives to build dam capacity. Finally, the optimal water
management can be decentralized through seasonal prices as in Case 1 and 2,

which we do not elaborate on to avoid repetition.

4 Single-purpose dams

There is a growing number of multipurpose dams but most of the dams are
single purpose’. According to Lindstrom et al. (2012), out of the 38,000 large
scale dams registered by the International Commission on Large Dams, half of
the single purpose dams are used for irrigation, 18 per cent for hydropower, 12
per cent for water supply, 10 per cent for flood control, and the rest for other
functions. In this regards, this section discusses several special cases in which
the dam fulfills a single purpose. We obtain clearer insights for single-purpose

dams and study boundary cases that are excluded in the previous section.

4.1 Flood control

Floods are among the world’s most frequent and damaging disasters. Dams
have historically been extensively used as a defence against floods. When dams
are used for flood control only, we have vy, () = 0, va(zq) = 0, hy (qw) = 0,
ha (qqa) = 0 and a4 (ig) = 0 for all 2y, 4, ¢uw, qd,%q > 0. It is then easy to see
that D < f,, because D > f,, implies excessive dam building. Observe also that
under utilization of the dam by storing y < D would imply suboptimal excessive
dam building, and therefore, we must have y = D. Welfare optimization (9)
reduces to the cost minimization program:

me,, (f., — < f..,.
gg%cw(fw D)+c(D), st. D< fy

9According to the International Commission on Larger Dams, most of the reg-
istered dams are single-purpose dams (29,248 or 49,5 % dams) and the multipur-
pose dams are only 9,857 (or 16,7 %) dams. Retrieved from http://www.icold-
cigh.net/GB/world _register/general _synthesis.asp

15



Define D* as the unique solution to ¢/ (D) = ¢, (fuw — D). The following result

w

is straightforward.

Proposition 6 If ¢ (0) < ¢, (fw), then the welfare optimal dam capacity is
given by D* € (0, f,,). Otherwise, the welfare optimal dam capacity is 0.

This result shows that flooding will be mitigated by building dam capacity
but never fully controlled'?. By applying implicit differentiation, it follows that
D* is increasing in f,,. To see this, such differentiation with respect to f,
implies

! (D*) DY = (fw —D*) . (l —D*/),

w

and hence,
¢y (fw — D7)
i (fw —D*) + ¢ (D¥)

because ¢’ > 0 and ¢ > 0. Constant marginal costs of dam building, as in

DY = € (0,1],

Haddad (2010), implies D* = 1, because ¢’ = 0. Then, increased inflow due to
climate change (e.g. heavy rains) will be met by an equivalent increase in dam
capacity. Under increasing marginal costs, we obtain D* < 1 and increased
inflow will only be partially met by increased dam capacity.

In principle, the alterations in the flood pulse modify the range of water
to regions that seasonally flood, in time and space'!, and the relation between

inflow and welfare optimal dam capacity is nonlinear.
4.2 Irrigation in the dry season

Irrigation is the single largest consumptive use of fresh water in the world. Half
of the world’s largest dams were built exclusively or primarily for irrigation. As
estimated 30-40 % of the 268 million hectares of irrigated lands worldwide rely

on dams (World Commission on Dams and Development, 2000). Based on our

10Problems related to the functions of lood control dams are often confined to physical or
technical aspects of construction.

HThough many factors determine flood damages, in this model we mainly focus on the total
flooding water volume, given the size of flooded areas. According to Lempériere ( 2017), a
flood value that now has a yearly probability of 1/100 may have a 1/10 probability in future.
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model we may obtain more detailed insights for the single purpose irrigation
dam.

In the case of dam for irrigation purposes only, we have: v, (x,) = 0,
va(zq) =0, by (qw) =0, hq (qq) = 0and ¢, (fu — y) = 0 for all ., T4, Guw, 9, f—
y > 0. As before, we have D < f,,. Under utilization of the dam by storing
y < D would imply suboptimal excessive dam building, and therefore, we must

have y = D. After substitution, the welfare function (9) becomes

max ag (iq) — c(D) (17)
s.t.

iqg— fa—0D < 0, ()\d)

D - fw S 0 (pw)

Observe that it is suboptimal to build dam capacity up to the level that
meets the satiation level of irrigation 74, because aj (7q) = 0 < ¢/ (D). So,
iq = fa+0D < 74, provided f; < 74. Let D* (f4) € (0,min { f,,0 " (7a — fa)})
be the unique solution to ¢’ (D) = daj; (fa+0D) > 0. Then, we have the

following result.

Proposition 7 If f; < 7q and ¢ (0) < dal;(fa). then optimal management is

given by

1. ]fcl(fw)géaii(fd""_&wa D= f, and iq = fqa+ 0 fu,
2. Ifd(fu) € (bag (fa+ 6fw),0ay(fa)), D =D"(fa) and iq= fq+ D" (fa)

and D* (fq) < 0.

Note that for the case of constant marginal costs of dam building we would have
D* (f4) = =671 < —1, because ¢’ = 0. For § =1, it is —1.
Proof. Sece the appendix "Proof of 4.2". m

The first case applies to arid regions. Then, harvesting all water in the
wet season for use in the dry season is optimal if the marginal costs of dam
capacity are lower than the marginal benefits from agriculture. Such practice is

observed in e.g. the Jordan River where water resources for Israel and Jordan
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are harvested in Lake Tiberias and there is almost no river flow to the Dead
Sea. The second case applies to semi-arid regions, where the wet season provides
abundant precipitation and it is optimal to harvest only a fraction of it for use
in the dry season. Then, the marginal costs of dam capacity are equated to the
marginal benefits from agriculture. Such practice can be observed in e.g. the
Ebro River basin in northern Spain.

There are two cases for which it is optimal not to build. This is the case if
the condition of the above proposition does not hold, either f; > 74, or fq <174
and ¢ (0) > da/; (fq). In the first case, river flow in the dry season is abundant
to reach the satiation level 74, while in the second case ¢’ (0) > 0 = da); (74)
says that the marginal cost of dam building lie above the marginal benefits of

irrigated agriculture.

4.3 Hydropower generation

Hydropower used in over 150 countries provided 19% of the world’s total elec-
tricity supply around the millennium (World Commission on Dams and Devel-
opment, 2000) and has increased to 24% today (NREL, 2014). If dam capacity
are built for hydropower generation purposes only, we have the following rela-
tion: vy (2y) = 0, vg(zq) = 0, ag(iq) =0, 7g = 0 and ¢, (fu —y) = 0 for all
T, Tdy bdy fur — Yy > 0.

All these additional restrictions imply that, after substitution of y = D —
qw > 0, we consider the reduced optimization problem for § € (0,1] and the

cost function ¢ (D) :

oo ax huw (qw) + ha (qa) — ¢ (D), (18)
s.t.
qqa — 0D +dq, < f4, (pa)
qa— D < 0 ()

We have the same three cases as in Section 3.

Case 1’: qg = fa+0 (D — qu) < D. As we will make clear in the appendix, this

special case follows directly from the general Case 1 of section 3. Let the pair
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qy, and ¢ be the unique solution to

Ry (qw) = ¢ (qw + 07" (qa — fa)) and 6kl (qa) = ¢ (quw + 6" (qa — fa)) - (19)
We have the following result.

Proposition 8 If (1 —9)q; + 0q, > fa, then welfare optimal water manage-
ment is given by hydropower generation qy, < @y and fq < ¢ < @q, and building

dam capacity D* = ¢ + 6 ' (¢ — fa)."?

Proof. Sece the appendix "Proof of 4.3-4.5". =

This result has a straightforward interpretation. Water scarcity in the dry
season to generate g of hydropower implies a water deficit of ¢ — f4 in the dry
season if no water would be stored during the wet season. This deficit is met by
building dam capacity that exactly meets the optimal hydropower generation g,
in the wet season plus the stored water needed to meet the water deficit gq — fy
in the dry season. The evaporation losses of stored water requires to store
67" (¢ — fa) in the wet scason. This is the case in arid and semi-arid regions
in e.g. Africa, southeast Asia and the midwest of the US. The building cost of
dam capacity make it optimal to install less capacity than g, + ot (Ga — fa),

i.e., the optimum levels under costless dam capacity building.

Case 27: g4 < D < fqa+ 6 (D — qy). Although this special case also seems to
follow directly from the general Case 2, there is an important caveat that we
have to impose. Proceeding as in Case 17, let the pair ¢, and ¢4 be the unique

solution to

' (qa) = Py (qw) + by (qa) and ¢ (qa) = dhg (qa) - (20)

Please note that (20) only holds when ¢4 = D. It yields inconsistency when
4d = qd-

Then, bearing in mind that A/, (g,,) > 0, we arrive at

 (qa) = hy, (qw) + hiy (qa) > hiy (qa) > by (qa) -

ote that ¢ < = q, “~(q; — fa) 1mposes the condition —0)q Qw > Jd-
12Note that ¢4 < D* =g, + 6 (¢} i tl dition (1 —6) ¢} + 6¢;,
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All these inequalities can only hold if and only if § = 1 and ¢, = G, such
that hl, (3w) = 0. So, this case can only hold for the unrealistic case of no
evaporation losses 6 = 1 from stored water. And then, (20) reduces to g, is the

unique solution to ¢’ (g4) = h}; (¢a). We have the following result.

Proposition 9 Only if 6 =1 and G, < §q < fq welfare optimal water manage-
ment 1s given by hydropower generation G, = Gu and g < G4, and building dam

capacity D= da-

Proof. See the appendix "Proof of 4.3-4.5". m

Loosely speaking, the above result implies an impossibility result for realistic
values of evaporation losses of stored water, i.e., any § < 1. Here we obtain
an entirely different conclusion than Haddad (2011), who assumes § = 1 and

constant marginal costs of dam capacity building.

Case 8: qgq=D = f43+ 6 (D — qu). Proceeding as in Case 17, let ¢, and g4 be

the unique solution to

ha (qw) = 6hg (qa) and (1= 06)qq + dquw = fa- (21)
We have the following result.

Proposition 10 Welfare optimal water management is given by hydropower

generation G < Guw and fq < da < Ga, and building dam capacity D = gq.

Proof. See the appendix "Proof of 4.3-4.5". m

By one of the binding constraints we have (1 — 0) §q + 6G,, = fq in the op-
timum. Rewriting in terms of the water deficit gy — fq implies this deficit is
equal to 0 (g4 — Guw) in the dry season. So, a nonnegative water deficit requires
61 (4q — fa) of water storage in the wet season. Obviously, hydropower gener-
ation ¢, in the wet season is lower than hydropower generation ¢; in the dry

season to allow for the optimal amount of water stored because D = g .
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5 Concluding remarks

To analyze the impact of dam capacity choice under rivalry use and external-
ities, we extend the hydropower generation model in Haddad (2011). Having
included the competing use of water resources and non-linear building costs
of dam capacity as well as the externalities of dams in a welfare optimization
model, we obtained the optimal dam capacity for multi-functional dams such as
providing infrastructure for industrial and households’ water use, conjunctive
use of hydropower generation and irrigation, reserving water in the wet season
for use in the dry season and mitigating flooding damages. The optimal solution
shows that optimal dam capacity depends on marginal benefits of hydropower
generation and the constraining factors. The optimal water management can
be achieved by using specific seasonal prices in a decentralized manner. This
research offers useful insights and lays the foundation for a policy framework
tailored to different development stages of water resource management in the
presence of hydropower systems. For example, our model can be used to ana-
lyzing the dam construction not only in the Mekong but also the others such
as the Amazon and Congo, due to an unprecedented boom in construction of
hydropower dams to address energy needs in these basins.

In this paper, we have not included issues such as salt water intrusion in the
dry season, in order to keep our analysis tractable. It is, however, worthwhile to
give some reflections on some relevant issues which are not formally discussed in
the paper. Various extensions of this analysis can be considered such as saltwater
intrusion in the estuary during the dry season, or the environmental function
of water resources competing with irrigation iy. Additional, in the dry season,
outflow 04 —14 to the estuary combats saltwater intrusion with costs ¢4 (04 — i4),
a convex function cq(-) with ¢/ (-) < 0. Therefore the costs decrease when
more fresh water flows into the estuary. We regard irrigation ¢4 as irrigation at
elevated inland plots that are immune to saltwater intrusion, and irrigation on
plots at the lowest parts of the delta can be included as benefits in the costs

function for saltwater intrusion. Moreover, we can replace a4 (i4) by aq (iq) —
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cq (04 —iq) and a}j (iq) by a/; (iq) — ¢/, (0a — tq). Therefore, iq increasing implies
both a/, and ¢ are increasing, whereas, o0, increasing implies ¢/, decreasing.
Restoring nature in wet season, both functions n,, (0,,) and nl, (0,,) are positive.
In the future work, we will present further details of feasible extensions and an

empirical analysis'3.

6 Appendix: Derivations

In this appendix, we derive the main results discussed in Section 3. Optimization
program (9) is strictly convex and, therefore, it allows a unique welfare opti-
mum with nonnegative shadow prices. Moreover, water using activities such
as consumptive use by industry and households, hydropower generation, irriga-
tion and storage of water have the property of free disposal, i.e., agents are not
forced to consume excess water. Consequently, the marginal benefits of these
activities are nonnegative. Formally, in the optimum it holds that v, (z,) > 0,
h'(gr) > 0 for 7 = w,d and a/; (iq) > 0.

The Lagrangian function of system (9) is given by

Vo (Tw) + V4 (Ta) + hw (quw) + ha (qa) + aq (ia) — ¢ (D) — cw (Gw — D + fu)
—pd [0xw + T4+ 0quw + ga — 0D — faq] — pglra + g4 — D]

_)\d [6ww +$d+5qw +7/d _6D_fd] .

The first-order-conditions for a positive solution, i.e. %y, X4, Guw;qd,id, D > 0,

are
Ty - vl (Ty) —0pg —IAg = 0,
Tq: Vy(za) —pa—Aa—pg = 0,
Qu Ry (qw) = ¢ (fw + qw — D) = dpa —0Xa = 0,
Q4 : hy(qa) —pa—pg = 0,
ZE ay (ia) — Aa (22)

D: —d(D)+cy, (fo+quw—D)+0pg+0Xa+py =

pd[xd+Qd_fd_6(D_xw_qw)] =
Adlia =0 (D =z — qu) — fa+ xd]
falra+qa— D] =

Il
OO0 0000

13 A recent empirical analysis applied a hydro-economic model for investigating optimal
irrigation efficiency can be found in Bekchanov et al (2016).
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Proof of Proposition 3.1. From (22), A\q = a/; (iq) is straightforward. Then,
Ailta — 0 (D — x4 — quw) — fa+ xa] = 0 implies either A\g = a/, (ig) = 0 and in

turn iy = 74, or g = ¢q¢ and in turn a/; (ig) > 0. So,
iq = min {74, qa} . (23)

By X\¢ = a/;(ig) and from combining the first and third line of (22) and the

second and fourth line of (22), we obtain:

Uiu (ry) = hév (Qw)_c//w (fw~+qw—D), (24)
v (a) = hy(ga) +ag(ia) - (25)

Note that v), (z,,) > 0 implies that k!, (qw) > ¢, (fw + qw — D). Whatever the
optimum, these conditions must always hold. m

Proof of Proposition 3.2. By the fourth line of (22), puy + pa = hl;(ga),
and then, by the nonnegativity of shadow prices, pq, g € [0,h] (qq)]. After
substituting the third line of (22) into the sixth line of (22), we obtain

Hq = Cl (D) — hgu (qu) - (26)

So, g > 0 implies ¢’ (D) > hl, (gw) and pg < h}; (qq) implies ¢’ (D) < b, (guw) +

h!; (ga). Then by g+ pa = hl; (qa), we obtain

pa = hq (qa) + I, (qw) — ¢ (D) € [0, 7 (qa)]- (27)

Whatever the optimum, these conditions must always hold. =

Proof of Proposition 3.3-3.5. As derived in the main text, combining both
propositions yields ¢/, (fw + qw — D) < ki, (gw) < ¢ (D). The solution to (9)
depends upon whether the water availability (3) or dam capacity (7) restricts
water use and hydropower generation in the dry season. Water availability is
the binding constraint whenever (1 — §) D 4§ (2 + ¢u) > fa. In the following,

we distinguish three cases based upon >, < and =.

Case 1: (1—=8)D+6(ww + qu) > fa
Then, x4+ g4 < fa+6(D — x4y — qw) < D. The last inequality imposes
g = 0. By Proposition 2, hl, (g,) = ¢ (D) > 0 and pg = h/;(g4). Then also,
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hl, (qw) > 0 implies ¢, < Gy. From combining u; = 0 and the first and second
line of (22), we obtain v}, (z,) = v} (zq). These results and Proposition 1

imply the upper five lines of (12). There are two subcases:

Case 1A: ©4+ qq < fa+0(D — xy — quw). Then also pg = 0, and A}, (qa) =
pd + pg = 0 imposes ¢4 = @4. S0, iq = min {74, gq}. The remaining variables

Ty Tdy Gus D > 0 solve the upper four lines of (12).

Case 1B: x4+ qq4 = fa+ 6 (D — x4 — qu). Then z, T4, Guw, 94,44, D > 0 solve
this constraint and the upper five lines of (12).

Combining both subcases implies that ., Z4, Guw, g, 24, D > 0 solve the upper
five lines of (12) and either x4 4+ g4 = f4 + 6 (D — x4y — qu) OF g4 = Gq. This

proves Proposition 3.

Case 2: (1—0)D+ 06 (zw + quw) < fa

Then, 24+ q4 < D < fg+ 6 (D — 4y — qw)- The last inequality imposes pg = 0
and, by Proposition 2, h);, (¢a) + h., (qw) = ¢/ (D) and py = h/; (gq). Combining
the first and second line of (22) and substituting the shadow prices, we obtain
vl (Tw) = 6 [V} (xq) — Rl (ga)]. These results and Proposition 1 imply the upper

five lines of (14). There are again two subcases:

Case 2A: xq+qq < D. Then, also p; = 0 and similar as in case 1.A, h/; (g4) =0
and g4 = g4. Then also b, (q,,) = ¢ (D) > 0 and ¢, < @, must hold. Then the

remaining variables x,, 4, Gu, 4, D > 0 solve the upper five lines of (14).

Case 2B: x4+ q4 = D. Then z, 24, qu, 94, %4, D > 0 solve this constraint and

the upper five lines of (14).

Combining both subcases implies that z.,, 4, qw, ¢4, tq, D > 0 solve the upper
five lines of (14) and either z4 + ¢4 = fa + 0 (D — zy — qu) or g4 = G4. This

proves Proposition 4.
Case 3: (1—08)D + 06 (2w + qu) = fa
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Then, 24 + g4 < fa+ 0 (D —xy — qw) = D. The equality constraint can be
rewritten as (1 —38) D = f4 — 6 (x4 + qu). Since we solve for D > 0, we must
have that fq > 0 (x4 + gw). By Proposition 2, u; + pg = h/;(g4). From com-
bining the first and second line of (22), we obtain u,; = v/ (z4) — 6~ v/, (€w).
These results and Proposition 1 imply the upper five lines of (15). Similar as

before, there are two subcases:

Case 3A: g+ qa < fa+ 0 (D — Ty — qu) = D. Then, p; = pg = 0 and for rea-
sons similar as in case 1.A, gg = §g. So, the remaining variables x,, 24, ¢w, tq, D >

0 solve the upper five lines of (15), where v/, (z4) = 6 v, (,,) holds due to

tq = 0.

Case 3B: ©q + qq = D. Then, py,ps > 0 and x4, T4, quw, gd,ta > 0 solve this

constraint and the upper five lines of (15).

Combining both subcases implies that ., x4, ¢, 94,4, D > 0 solve solve the

upper five lines of (15) and either x4+ g4 = D or [ g4 = @4 and p; = pg = 0].

Water stored is in nonnegative amounts, which imposes D > x,, + q,. In

addition to Proposition 1, u, € [0, h/; (g4)] imposes
Vi (2w) < 0vg (24) < 0hy (qa) + v (Tw) -
This proves Proposition 5. [

Proof of Proposition 4.2. From (22), the first-order-conditions for a positive
solution, i.e. ¢4, D > 0, in this special case are
id : ail (Zd) - )\d == 0,
D: —d(D)+0Ag—pw =0,
Ad(ia — fa —0D) =0,
Pw (D - fw) =0.
By Proposition 3.1, we have that Ay = a}; (i4) and, therefore, p,, = da/; (iq) —
¢ (D). Nonnegativity of p,, implies da; (ig) > ¢’ (D) > 0 and, thus, both iy < 74
and Ay > 0. Then, iy = f4 4+ D holds. There are two cases to consider:
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o If D= f,. Then, p, >0, iq = fqg+ f, and D = f,, can only be optimal

if 6al, (fa+ 0fw) > ¢ (fu)-

e If D € (0, fu), then p,, = 0 implies da/; (iq) = ¢ (D) > 0. Combined with
iqg = fa+ 0D, we obtain that D solves ¢’ (D) = da}, (f4 + 6D) > 0, which
is D* (fq). Since ¢’ (D) is increasing in D, and da), (fq + 0D) is decreasing
in D, there exists a unique intersection point D € (0, f,,) if and only if
both ¢ (0) < dal, (fa) and ¢ (fu) > dal; (fa+ 0 fw). Since iqg < 74, we also
have fg+0D < g, or D < 6" (ig — f4). So, D < min{ fu,6 " (7a — fa)}-

Implicit differentiation of ¢ (D* (f4)) = dal; (fa+ dD* (fq)) with respect to fq
yields

" (D" (fa)) - D" (fa) = dag (fa+ 6D" (fa)) - [L + 6D (fa)] .

which implies

D*/ (fd) — 56‘3 (fd + oD* (fd))
" (D* (fu)) — 6%8al] (fa+ 6D* (fa))

because ¢’ > 0 and a/; < 0. This completes the proof. [ ]

Proof of Proposition 4.3 - 4.5. From (22), the first-order-conditions for a

positive solution, i.e. qu,qq4, D > 0, in this special case are

qu : hy, (Gw) —0pa = 0,
qq hy(qa) —pa — g = 0,

D : - (D)+dpa+pgs = 0, (28)
Pa [qd *fd*(s(Df(ZQu)] = 01
talga — D] = 0.

Recall that D > q,, also holds. So, D > max{qy,qq}. There are three cases to

consider.

1. ga < fa+6(D—qu) < D. Then, p; = 0 and Proposition 2 imply
h', (qw) = ¢ (D) > 0, and (13) imposes 0/, (g4) = ¢ (D) > 0. So, ¢ < Juw
and gg < gq4. The last inequality imposes g4 = fa + 6 (D —qu) > f4,

because water stored is in nonnegative amounts, i.e., D — ¢, > 0, and
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h!; (gq) > 0 while g4 < fq + (D — qy) is suboptimal. The binding con-
straint yields D = g, + 07" (qq — f4) and after substitution into ¢’ (D) =

hl, (qw) = dh!; (g4) we obtain (19). This proves Proposition 4.3

2. ¢ <D< fg+6(D — qy). Then, pg = 0 and Proposition 2 imply ¢’ (D) =
h'y (qw) + hl; (ga). Recall from the main text that (13) also holds for Case
2, so 0hl;(qa) = ¢ (D) > 0. As in Case 1’, we have ¢4 < @4. In this
case, gg¢ = D has to hold, because otherwise ¢4 < D < fq+ (D — qy)
while A/, (gq) > 0 is suboptimal. So, after substitution of D = ¢4 into
¢ (D) = 1, (qu) + ) (g4) = 8, (qa) we obtain (20). By &, (gu) > 0, we
have

 (qa) = hy, (qw) + hiy (qa) > by (qa) > Ohg (qa)

and these inequalities can only hold if and only if 6 = 1 and ¢, = G, such

that hl, () = 0. This proves Proposition 4.4

3. ¢ <D = fg+ (D —qw). Recall from the main text that (16) holds
for Case 3, so pg = ¢ (D) — dh/;(qq). By Proposition 2, we also have
pg = ¢ (D) — hl, (gw). So, hl, (gw) = 6k} (¢q) must hold. Substitution of

the last equality into Proposition 2 yields
dhq (qa) < ¢ (D) < (1 +0) hy (qa) ,

and due to ¢’ (D) > 0 this imposes h; (g4) > 0 and g4 < gq. This imposes
gqa = D, because otherwise g < D = fq+ 0 (D — q,,) while 1/, (gq) > 0 is
suboptimal. After substitution of D = g4 into the binding constraint (21)
follows. Because water stored is in nonnegative amounts, i.e., D — q,, > 0,

ga=D = fi+6(D — qu) > fq. This proves Proposition 4.5
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