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Abstract

This paper investigates the impact of mining pollution on the likelihood of feeling sick. We link a

geocoded soil pollution information with five rounds of Mongolia Household Socio-Economic Survey

data and employ logistic regression models to investigate the medium- to long-run health impacts.

Our results indicate that living one kilometre away from mines reduces a person’s probability of

feeling unwell by 11 per cent. The medical expenditure also increases as a result of feeling sick.

Mining pollution impacts younger children more and generally aggravates respiratory illnesses.

As expected, small-scale gold mines have a larger effect on individuals’ health than medium and

large scale mines. Our findings suggest that tighter environmental regulations to control mining

pollution can reduce the short and long-term health risks of the people living near the mining sites.
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1. Introduction

Environmental pollution is one of the leading causes of premature deaths in the world. Around

nine million premature deaths caused by pollution occurred in 2015, which is 16 percent of all deaths

worldwide (Landrigan et al., 2018). Poor environmental quality result in considerable health losses

and diseases caused by pollution lower productivity and reduce the gross domestic products in low

and middle-income countries by up to two percent annually (Greenstone and Jack, 2015; Landrigan

et al., 2018; Levasseur et al., 2021). Despite its substantial contribution to creating employment and

spurring economic growth, the extractive industries exert significant negative externalities to the

local communities (Aragón and Rud, 2015). Respiratory diseases (Pless-Mulloli et al., 2000; Saha

et al., 2011; Hota and Behera, 2015, 2016), changes in mortality and morbidity (Cordier et al., 1983;

Hendryx and Ahern, 2008, 2009) and neurological and psychological deficits in children resulting

from mercury neurotoxicity (Cordier et al., 2002) are some of the adverse health outcomes resulting

from mining pollution.

This paper investigates the impact of pollution from mining activities on individuals’ likelihood

of feeling sick when they are environmentally exposed to pollution such as mercury and arsenic in

soil. For example, 1.3 kilograms of mercury is dumped into the environment for every kilogram

of gold produced (Harada et al., 1999). Around 40 percent of the mercury goes to tailings, soils,

stream sediments, lakes, and rivers during the initial stage of gold and mercury amalgamation.

The remaining 60 percent of the lost mercury is released into the atmosphere when the amalgam

is burned to extract the gold (Harada et al., 1999; Van Straaten, 2000). Artisanal and small-scale

mining (ASGM) is the single largest buyer of mercury in the world, consuming around 1,400 tonnes

in 2011 and releasing 17 percent of annual mercury emissions to the atmosphere. Mercury is a

dangerous neurotoxin that is harmful to people, especially to developing fetuses and young children,

increasing the risks of damaging their brain and nervous system development and function (Telmer

and Stapper, 2012; Landrigan et al., 2018). The immediate health outcomes of mining activities

may seem not to be as severe as symptoms suggest because symptoms, such as coughing, come

and go. However, over the long term, chronic illnesses and cancer can develop as leading causes

of death in mining regions (Cordier et al., 1983; Hendryx and Ahern, 2009). Hence, one way to
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examine the overall impact of mining pollution on human health is to use soil pollution data as it

is correlated with air and water contamination (Li et al., 2014; Landrigan et al., 2018; Levasseur

et al., 2021).

More specifically, we examine whether living in a close proximity to mining sites increases the

probability of feeling sick. Pollution can affect local communities through four main channels: (i)

the distance from a person’s residence to a pollution source, (ii) duration of exposure to pollution

(e.g., months, and years), (iii) levels of pollution (above or below a threshold) and (iv) the type of

pollution (e.g., lead and mercury) (Graff Zivin and Neidell, 2013). We argue that the distance from

polluted mining sites has causal effect on the probability of feeling unwell. Our paper relates to

Aragón and Rud (2015) who reported that nitrogen dioxide emanating from gold mining in Ghana

significantly reduced farmers’ productivity and increased rural poverty. We also closely follow

Von der Goltz and Barnwal (2019) who found that lead contamination from mining activities

increased anemia in women by ten percentage points and stunting in children by five percentage

points in 44 resource-rich developing countries. However, the impact of overall mining pollution

on the population’s health near mining activities in developing countries remains limited.

We investigate Mongolia, which offers both soil heavy metal pollution information from min-

ing activities and individual morbidity data from the Mongolia Household Socio-Economic Sur-

vey (HSES). Mongolia is a resource-rich lower-middle income country that received a substantial

amount of foreign direct investment into the extractive industries at the onset of the commodity

price boom in the early 2000s (Li et al., 2017; Doojav et al., 2017). The country is also one of

the 45 countries where mercury is the dominant pollutant at artisanal and small-scale mining sites

(Caravanos et al., 2013). The main hazardous heavy metal persisting in soils around mining sites

are mercury, cadmium, arsenic and lead that are harmful to human health (Vandermoere, 2008;

Landrigan et al., 2018).

The impact of pollution from mining activities on human health in both developed and de-

veloping countries remains underexplored. Studies such as Chay and Greenstone (2003); Neidell

(2004); Currie et al. (2009a,b); Janke et al. (2009); Currie et al. (2015) explore the effects of air

pollution and toxic releases from industrial plants on human health, mainly in the United States.
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However, our paper is similar to Hill (2018) who found that an additional shale gas well increases

the probability of low birth weight by seven percent and the likelihood of premature birth by three

percent in Pennsylvania, U.S. Our study is also closely related to (Marcus, 2021) who reported that

the petroleum leaks from underground storage tanks increase the probability of low birth weight

and preterm birth by seven percent in Pennsylvania, Florida, and New Jersey in the U.S. However,

these studies report the impact of the extractive industries on infant health.

Therefore, our study narrows the gap in the literature in a few distinct ways. First, we use

the distance from a person’s residential area to the nearest mining site where soil is polluted

with mercury and arsenic in Mongolia to examine the impact of mining pollution on sickness.

Previous studies such as Currie et al. (2009a, 2015); Rau et al. (2015); Hill (2018); Von der Goltz

and Barnwal (2019); Persico and Venator (2021) used the distance between the residential area

and the pollution source to identify the treatment effect of pollution in a difference-in-differences

setting. Our study relies on the exact location of pollution source and pollution level to draw a

causal inference between distance and sickness. We use the distance to the pollution source as the

primary variable of exposure as distance captures the effect of different heavy metals originating

from the same source.

Second, our analysis examines the impact of pollution on all age groups: children up to 14

years old, the working-age population and the older people above the age of 65. Pollution affects

different segments of the population disproportionately, while the impacts can be lifelong (Currie

et al., 2014). While many studies examine the effect of pollution on infant health (i.e., Currie et al.

(2009b); Currie (2011); Currie et al. (2014, 2015)), no previous study has investigated the impact

of pollution on the three groups in combination. Hanna and Oliva (2015) and Graff Zivin and

Neidell (2012) examine the effect of pollution on the working-age group. Neidell (2004), Rau et al.

(2015) and Persico and Venator (2021) look at the impact of pollution on children’s asthma and

test scores. We study the impact of pollution from mining on children’s sickness.

Third, we investigate the impact of pollution from mining on various body systems. Specifically,

we explore respiratory, cardiovascular, digestive, and other body systems’ responses to heavy metal

pollution from mining. For example, children and individuals exposed to air pollutants from
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mining activities have more frequent respiratory symptoms and incur higher meidcal expenditures

(Charpin et al., 1988; Pless-Mulloli et al., 2000; Hota and Behera, 2015, 2016). However, the effect

of pollution from from mining on other body systems is not well-known. Next, the effect of the mine

scale on individuals’ health outcomes is explored. While fully-licensed medium and large mines

might carry out environmental rehabilitation activities required by the law, the environmental

quality in developing countries is still low. On the other hand, small-scale miners care more about

their consumption for today than the quality of the environment for tomorrow (Greenstone and

Jack, 2015). Our final investigation looks at the impact of different minerals mined across the

country. The commonly mined minerals such as gold and limestone are examined to shed light

on these minerals’ impact on human health. Thus, we investigate the differential impacts of mine

scales and types of minerals on sickness.

We employ a unique approach to examine soil pollution’s impact on individuals’ health near

mining sites. By assigning pollution to individuals and using a large enough and nationally repre-

sentative set of household-level survey data over several survey rounds, we optimize the precision

of our causal estimate of pollution on sickness (see, e.g., Graff Zivin and Neidell, 2013). Distance

as the exposure variable is preferred rather than the heavy metal pollution level because multi-

ple heavy metals originate from the same mining site. Although we assume a linear relationship

between the distance and the likelihood of feeling sick, we also explore the nonlinear effects of pol-

lution by utilizing dummy variables based on the government’s pollution standards, as suggested

by Graff Zivin and Neidell (2013) and implemented by Currie et al. (2009a).

We find that mining pollution is detrimental to the health of individuals living within six

kilometres of a mining site. Our preferred estimate suggests that living one kilometre away from

mines would have prevented 8,700 people from feeling sick and saved over $635 thousand in private

and public health expenditures annually. The impact of mining pollution is more pronounced

for the vulnerable groups such as younger children (aged 0-14 years). Moreover, mining pollution

generally aggravates respiratory illnesses. Interestingly, while small-scale mines have a significantly

larger negative effect on individuals’ health than large-scale mines, gold mines increase individuals’

probability of feeling sick. Our findings are important as mine-impacted communities in resource-
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rich developing countries bear the burden of environmental pollution from mining activities while

the entire economy may benefit from those activities. The results suggest that tighter environmental

regulations to reduce mining pollution can have greater health and socioeconomic benefits for the

population near the mining sites.

The rest of the paper proceeds as follows. Section 2 describes the empirical strategy and the

data employed in the paper. Sections 3 and 4 discuss the results and findings, respectively. Finally,

Section 5 concludes and provides policy implications.

2. Methodology

2.1. Model specification

We estimate an individual’s likelihood of feeling unwell in the vicinity of a mining site by a

number of specifications. The health risks of long-term exposure to heavy metals increase through

various factors of transmission: (i) repeated and prolonged contact with residuals in soil (e.g.

farming), air (e.g. breathing dust and particles) and water (e.g. swimming and drinking) and food

chain (e.g. homegrown produce) (Li et al., 2014). Therefore, we estimate the lower-bound effect of

overall pollution from mining on sickness as our analysis utilizes soil pollution data. Our empirical

specification follows Neidell (2004), who uses ordinary least squares (OLS) method to estimate

the impact of air pollution on the number of emergency room asthma admissions. However, our

model exploits the distance from an individual’s residential area to the nearest mine as the primary

exposure variable of pollution. Such a specification assumes that mines, which are located further

away from a residential area than the nearest mines do not affect sickness. We choose the distance

as it is the only variable that captures the impact of all contaminants simultaneously. Moreover,

the heavy metals are highly correlated as they mostly originate from the same source, making it

challenging to investigate the effect of each pollutant separately. The main model that evaluates

the impact of distance to the nearest mine on sickness is specified as follows:

yist = α+ βln(distance) + λs + γXist + ηt + εist (1)
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where yist is the outcome variable taking the value of one if an individual i was sick in the past month

in sub-province s at time t, and zero otherwise. ln(distance), the natural logarithm of distance

from an individual’s residential area to the nearest mine, is the primary variable of interest. λs is

sub-province fixed effects, accounting for possible omitted variables and time-invariant differences

in sub-provinces that could impact a person’s sickness regardless of the distance to a mine. ηt is

survey year-fixed effects to capture any time-varying events in the model.

Finally, we include Xist representing a person’s age, gender, education, household consumption

per capita, and urban/rural status, to allow for within-person differences. The individual-specific

variables partially control for avoidance behavior. εist is the independently and identically dis-

tributed error term. The model evaluates an individual’s probability of feeling sick by a logistic

regression as it is more efficient than the linear probability and probit models. The standard errors

are clustered at the household level. The main hypothesis tests that distance, β = 0, has no effect

on sickness. We estimate the marginal effect at means from the main variable of interest and the

other covariates in the model. The cut-off point for the distance to the nearest mine is determined

at six kilometres following Romero and Saavedra (2015) and Von der Goltz and Barnwal (2019)

who found that mercury and lead contamination from mines within five and 20 kilometers had

significant adverse effect on health, respectively.

Furthermore, Equation 2 investigates the impact of distance to the highest pollution level on

illness.

yist = α+ βj

7∑
j=1

ln(distanceji) + λs + γXist + ηt + εist (2)

where everything stays the same as in Equation 1 but ln(distancej), which is the natural logarithm

of distance from an individual’s residential area to the mining area where the highest level of

contamination for heavy metal j is recorded. Since most heavy metals originate from the same

source, including all the distances in a single model creates multicollinearity. Therefore, Equation

2 is estimated for each single pollutant.1

1The pollution level for some heavy metals of mines are above the permissible level within six kilometers. However,
for some heavy metals, the highest level of pollution is below the permissible level.
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We also consider the level of heavy metal contamination in the next model to assess if both

distance and level of pollution matter for the nearby inhabitants’ health outcomes. Therefore,

Equation 3 examines the impact of heavy metal contamination level that are above the permissible

level set by Mongolian Agency for Standardization and Meteorology, MASM (2019).

yist = α+
7∑
j=1

ln(distanceβji × levelδji) + λs + γXis + ηt + εist (3)

= α+

7∑
j=1

βjln(distanceji) +

7∑
j=1

δjln(levelji) + λs + γXist + ηt + εist

= α+ βln(distance) +
7∑
j=1

δjln(levelji) + λs + γXist + ηt + εist

where everything stays the same as in Equation 1 but Equation 3 includes interaction of the

distance and the contamination level for arsenic and mercury as these heavy metals exceed the

precaution value/permissible level.

Finally, the causal link between pollution and sickness can be nonlinear. Equation 4 estimates

the impact of pollution on illness in a nonlinear form where we include dummy variables for the

heavy metals that are above the permissible levels following the methods implemented by Currie

et al. (2009a).

yist = α+ βln(distance) +

7∑
j=1

δDj + λs + γXist + ηt + εist (4)

where everything stays the same as in Equation 1 but includes dummy variables for individuals

exposed to a particular heavy metal pollution. Dj takes the value of one for individuals exposed

to mercury pollution level above the action value. Although over 30 per cent of individuals are

exposed to arsenic pollution, the level of pollution does not threaten living organisms and human

health (see Table 1 for reference). Therefore, we include only mercury, which significantly threatens

human health.
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2.2. Endogeneity issues

Two main endogeneity issues can arise from the causal inference of soil pollution on sickness.

First, pollution is endogenous to individuals’ avoidance behavior (Neidell, 2004; Graff Zivin and

Neidell, 2012, 2013). People respond to pollution announcements by changing their behavior and

reducing their outdoor activities to avoid pollution. For example, Metropolitan Statistical Areas

with a population of more than 350,000 in the United States must report the daily air quality

index to the public through the local media (newspapers, radio, television, telephone messaging)

when pollution levels become unhealthy for the sensitive groups (California Air Resources Board,

1990; U.S. Environmental Protection Agency, 2006).2 This kind of information induces behavioral

changes in the population exposed to air pollution and makes it challenging to assess air pollution’s

impact on human health (Neidell, 2004).

On the other hand, unlike air pollution, soil heavy metal pollution from mining activities is not

monitored frequently to inform the public about the harms of soil pollution in developing countries

such as Mongolia. The population environmentally exposed to heavy metal pollution might not

be aware of the pollution if they cannot observe it (Graff Zivin and Neidell, 2013). For example,

mercury vapor is odorless and colorless, making it difficult to see and smell during evaporation until

it affects the body (Solis et al., 2000). Similarly, most inorganic arsenic compounds are white or

colorless powders with no smell or taste (U.S. Agency for Toxic Substances and Disease Registry,

2007).3 Therefore, deliberate avoidance behavior would not exist when public information about

soil pollution is not available, and the heavy metals in soil are not readily observable (Graff Zivin

and Neidell, 2013). Unless local governments and environmental agencies notify the local com-

munity, the inhabitants would not be fully aware of soil pollution’s potential dangers. Because

avoidance behavior is an ex-post decision, omitting avoidance behavior in the model would not

invalidate the estimates. Instead, the estimates would give the lower-bound biological effect of

pollution (Currie et al., 2014).

2U.S. Environmental Protection Agency (2006) describe the air quality index from good to hazardous based on
air quality index ranging from 0 to above 301.

3Inorganic arsenic occurs in minerals and ores that contain copper or lead. During the smelting of these minerals,
most arsenic is released into the atmosphere as fine dust. Thus, this fine dust is colorless, tasteless, and odorless.
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Second, pollution is endogenous to residential sorting in which households, who can afford

it, relocate to a cleaner area to permanently reduce their exposure to pollution (Graff Zivin and

Neidell, 2013; Von der Goltz and Barnwal, 2019). However, residential sorting is mainly undertaken

by those who are highly educated (Currie, 2011; Marcus, 2021). For example, only highly educated

white mothers relocated after local newspaper coverage about leaking underground storage tanks

is released in the U.S (Marcus, 2021). Besides, pollution such as toxic air emissions from industrial

plants in the U.S reduced the values of houses within 0.5 miles of a plant by 11 per cent (Currie

et al., 2015). Consequently, high income people will most likely not live near polluted areas

compared to those who cannot afford houses with better environment and amenities. Residential

sorting, therefore, makes health outcomes endogenous to socioeconomic status (Graff Zivin and

Neidell, 2013). However, residential sorting also depends on the availability of information and

people’s awareness about the specific pollution. Moreover, households in developing countries like

Mongolia would not relocate or change their behavior easily unless their economic opportunities

deteriorate and livelihoods suffer due to natural disasters and loss of income (Levasseur et al.,

2021). Therefore, we do not consider residential sorting as a threat to our empirical identification

and specification.

There are some omitted variables that can cause endogeneity in our causal inference. For

example, prevailing winds, water flows and differences in altitude, changes in seasonal temperatures

and other allergens in the environment may affect the impact of pollution on sickness (Anderson,

2020). However, sub-province fixed effects account for the permanent differences in the geography

and weather conditions. In addition, our results are not sensitive to including quarter and month

fixed effects in our model in account for the seasonality of sickness. Therefore, considering the

above-mentioned endogeneity issues our estimates provide a lower-bound effect of overall mining

pollution on the communities nearby because mining activities also pollute the air with dust and

particulate matter, and stream sediments by leaching into water supplies. Soil pollution, therefore,

partially captures the effect of overall pollution from mining activities.
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2.3. Data

2.3.1. Contamination data

We use geo-referenced soil pollution data from mining sites in Mongolia, accessed from the Geo-

Database on Ecological Health (GDEH), the Ministry of Environment and Green Development.

A total of 1,315 soil samples from 262 mining sites in 95 sub-provinces across 17 provinces are

recorded in the GDEH for 2002-2019.4 However, our final sample consists of 39 mining sites that

are within six kilometres of residential areas in 25 sub-provinces across 15 provinces as most samples

were recorded in 2011-2012. Soil samples from gold, spar, wolfram, coal and limestone mining sites

were collected and analyzed by the Geo-ecological Institute, the Central Geological Laboratory,

and the Laboratory of National Agency for Meteorology and Environmental Monitoring. The

atom absorption spectrophotometer method is used to determine heavy metals in the soil samples

(GDEH, 2012).5

The database records mercury, arsenic, lead, zinc, cadmium, copper and nickel contamination

in soil samples. To assess the heavy metal pollution severity, we use the following three values:

(i) precaution value, (ii) trigger value, and (iii) action value set by the MASM (2019) (see Table

1). A value above the precaution value indicates that soil is polluted with heavy metals. A value

exceeding the trigger value means that harm is caused to living organisms and areas of water.

A value reaching the action value requires immediate action to neutralize the soil, stop current

land uses, and relocate the affected population. Our analysis focuses on mercury and arsenic that

exceeds the action and precaution values, respectively.

We use each soil sample point’s longitude and latitude, along with a household’s residential

area coordinates, to calculate the distance from a household residential area to the nearest mine.

We calculated the great-circle distance from the interior centroid of the location (i.e., residential

4There were 3,222 mining and exploration licenses issued to 2,063 mining companies in Mongolia between 1995
and 2019. The total area covered by mining licenses comprises 4.75 percent of the country’s territory (Extractive
Industries Transparency International, Mongolia, EITIM, 2020). Although the 262 mining sites represent 13 percent
of mining companies, we limit the mines examined in the study to those located within six kilometres of a residential
area.

5Atomic absorption spectrometry (AAS) detects heavy metals in solid samples through the application of charac-
teristic wavelengths of electromagnetic radiation from a light source. Individual metals absorb wavelengths differently,
and these absorbances are measured against the standards set to analyze the level of heavy metals (Thermo Fisher
Scientific, 2021).
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area) to the closest interior centroid of a soil sample site using the Haversine formula employed

in Gradstein and Klemp (2020). A mining site has several sampling points for heavy metals. We

calculated the distance from a household residential area to each of the sampling points. We used

the shortest distance from a residential area to a sampling point as the primary variable of interest,

thereby capturing a person’s exposure to mining pollution.

The extent of environmental exposure to soil heavy metal contamination is recorded in Table 1.

All individuals are exposed to mercury pollution level which significantly affects living organisms

(columns 2 and 4). Furthermore, around 40 percent of individuals are exposed to mercury pollution

level that exceeds the action value requiring the cleansing of soil and relocating of the inhabitants

(column 6). While over 30 percent of the individuals are exposed to arsenic soil pollution, only

around two percent of people are exposed to lead and cadmium pollution (column 2 of Table 1).

The other heavy metals such as zinc, copper and nickel do not pollute the soil as they are within

the permissible level.

[Insert Table 1]

2.3.2. Individual morbidity data

We use data from the most recent five rounds of the HSES, which is a nationally representative

cross-sectional survey conducted by the National Statistics Office of Mongolia in every two years.

The survey uses a stratified two-stage sample design based on population figures obtained from local

governments’ administrative records. The first stage stratifies the capital city, Ulaanbaatar, and

the 21 provinces. The second stage divides the 21 provinces into two substrata: urban, comprising

the provincial capitals, and rural, consisting of small towns and the countryside (National Statistics

Office, 2018).6 The five rounds of the HSES - 2008, 2010, 2014, 2016 and 2018 - included 38,425

individuals living in sub-provinces where mining occurred and soil samples had been collected.

The 2012 round is excluded from the analysis as the geographic coordinates are missing from the

data. The final sample, restricted to those living within six kilometres of any mine, comprises 6,713

individuals distributed as: 745 in 2008; 796 in 2010; 1,821 in 2014; 1,767 in 2016 and 1,584 in 2018.

6The HSES questionnaires and the primary datasets are publicly available from the NSO Census and Survey data
catalog http://web.nso.mn/nada.
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The types of health problems individuals experienced in the month prior to the survey are

recorded. The illnesses reported by individuals fall into the following categories of body systems:

(i) respiratory, (ii) digestive, (iii) cardiovascular and (iv) other illnesses including damage or intox-

ication by external impact. The HSES also provides information about household expenditure on

medication, transportation, hospitalization, and other medical services in the prior 12 months. The

summary statistics for the outcome variables are reported in Table 2. On average, eight percent of

the sample said that they had been sick in the month before the survey. In addition to examining

sickness from all causes, we look at illnesses of specific body systems. The average medical expenses

per person is thousand MNT18 after adjusting for inflation.

[Insert Table 2]

The summary statistics for the explanatory and the control variables are shown in Table 3.

The primary variable of interest that captures soil pollution exposure is the distance from an

individual’s residential area to the nearest mine. The average distance to the nearest mining

site is three kilometres and it is similar for the different types of heavy metals. The individual-

specific control variables included in the analyses are monthly consumption per capita, age, gender,

education, number of household members, and household urban status.

[Insert Table 3]

3. Results

3.1. Main results

We investigate whether individuals living nearby mines, who, therefore, might be environmen-

tally exposed to soil heavy metal pollution, have an increased likelihood of feeling unwell. The

empirical analysis is carried out in two stages to test the four competing hypotheses to answer the

research question. First, we estimate a simple binary outcome model with the primary variable of

interest and sub-province fixed-effects to examine whether the distance to the nearest mine affects

sickness. Next, our preferred estimation adds individual-specific control variables and survey-year
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fixed effects in the model.7 The standard errors are clustered at the household level and the

marginal effects at the means of covariates are estimated. Our investigation uses the conventional

five percent significance level for testing the competing hypotheses.

We expect the variable of interest, the distance from an individual’s residential area to the

nearest mine, to have no impact on a person’s probability of feeling sick. We estimate Equation

1 and report the results in Table 4 using the linear probability (LPM), probit and logit models.

The baseline results from the LPM and the preferred model with control variables are presented

in columns 1 and 2, respectively. The coefficient estimate of the distance to the nearest mine is

negative and significant in column 1, indicating that the distance to the nearest mine significantly

affects a person’s probability of being sick: the further away from the mine, the less the chance of

becoming ill. The model’s results with individual-specific control variables and survey-year fixed

effects are consistent with the baseline results. The magnitude of the coefficient for the distance

is slightly higher, indicating that the addition of control variables were negatively correlated with

the exposure variable.

[Insert Table 4]

The marginal effects from the probit model, shown in columns 3 and 4 of Table 4, are in line

with the LPM results. Similarly, the marginal effects from the logit models in columns 5 and 6

are consistent with the LPM and probit models. The coefficient estimate for distance in column 6

indicates that a one per cent increase in the distance from a mining site would reduce a person’s

likelihood of feeling sick by 1.4 percentage points. In addition, survey year-fixed effects are included

in the model to account for the duration of exposure to mining pollution. The estimates of the

year-fixed effects are positively correlated with sickness but not at a significant level in 2012 and

2014. The correlation is negative in 2016 in the logit model but not significant. However, the

year 2018 has a significant impact on sickness, showing the effect of duration of exposure to toxic

materials. The overall goodness of fit for all models with the control variables are four percent for

the LPM and seven percent for the probit and logit models and our main variable of interest is

7We use linear probability, probit and logit models to check the robustness of our result with different estimation
techniques.
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significant at the one percent level. The results from both probit and logit models indicate that

soil pollution from mining has a significant adverse effect on the health of the inhabitants living

near mines. We estimate a logit model in our subsequent analyses because of the model’s efficiency

to predict probability better than the other two models (Wooldridge, 2015).

The control variables in our models are all in line with our expectations and meaningful. Income

is an important determinant of sickness but it is usually erroneous and we include consumption

per capita as it is a more reliable indicator of welfare in the household data (Deaton, 1997).

However, sickness can also affect medical expenses and other types of consumption, making the

latter endogenous in the model. Therefore, we use the share of working-age members in the

household as an instrument to predict consumption. The results indicate that individuals with

higher consumption are less likely to feel sick.

Next, we examine whether distance to the highest level of heavy metal contamination (within

six kilometres) significantly affects sickness. We use the distance to the mining site with the highest

heavy metal contamination level instead of the shortest distance to a mine. Since the seven heavy

metals coexist at most locations, the distance to the highest contamination level of any heavy metal

also captures the effect of other coexisting heavy metals. Therefore, we exploit the distance to each

heavy metal’s highest contamination level as the variable of interest in our model by estimating

Equation 2. Due to high level of correlation of the variables, all of them cannot be calculated

in the same model (see Table A.1 for correlation matrix). The results from the seven separate

models, each of which only includes the distance to a mine with the highest level of a particular

heavy metal, are presented in Table 5. The coefficients in Table 5 are similar, indicating that our

distance variables capture the effects of all heavy metals together. The results in Table 5 validate

our approach to use distance to mines to capture the exposure to pollution.

[Insert Table 5]

The amount of heavy metal released into the soil can negatively impact the health of people

living nearby to mines. We explore whether the level of pollution affects sickness. The assessment

of heavy metal pollution is based on three values. In more than 30 percent of the sample population

is exposed to arsenic pollution, whereas almost all individuals in our sample live in areas polluted
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with mercury (see Table 1). More concerning is that close to 40 percent of individuals reside in

areas with severe mercury pollution levels, requiring cleansing of the soil and relocation of those

exposed individuals. We examine these pollutants’ impacts in more detail because of the particular

concerns about arsenic and mercury.

The results of the investigation of arsenic and mercury contamination levels are provided in

Table 6. The results are derived by interacting the general distance variable with the natural

logarithm of arsenic and mercury pollution levels and estimating Equation 3. The results confirm

our main finding and the primary variable of interest (distance to the nearest mine) is not affected by

the inclusion of arsenic and mercury pollution levels. Overall, the results show that the distance to

the nearest mine captures the effects of exposure. In contrast, the inclusion of the level of pollution

does not affect the main findings.

[Insert Table 6]

Up to this point of our analysis, we assumed a linear relationship between the shortest distance

and the likelihood of feeling sick in our main specification. However, the relationship between

pollution level and the probability of feeling unwell can be nonlinear. Using the MASM (2019)

threshold values and following Currie et al. (2009a), we include dummy variables for heavy metals

that exceed the action value as that is the level most harmful to human and estimate Equation 4.

The dummy variable takes the value of one for individuals exposed to mercury level that is above

the action value, and zero otherwise. The effect of mercury is insignificant and the estimates in

column 2 in Table 7 shows that distance significantly affects the probability of getting sick when

mercury pollution is above the action value. The results show that the inclusion of level of pollution

in a nonlinear form does not alter our main findings, indicating that the distance has a significant

impact on sickness. Moreover, the magnitude of the effect is higher in column 2 of Table 7 than

our main findings.

[Insert Table 7]

The results from Tables 4 - 7 confirm that the distance from a mining site to an individual’s

residential area significantly affects the probability of feeling sick. The estimates provide evidence
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that individuals experience adverse health outcomes from being environmentally exposed to soil

pollution from mining activities. The results are in line with Hill (2018) and Marcus (2021) who

examined effects of shale gas and petroleum leakage on infant health, respectively. Moreover, the

findings support Aragón and Rud (2015) and Von der Goltz and Barnwal (2019) who also claim

that mining activities have significant negative effects on the nearby communities. Due to the

nature of our individual-level survey that only records self-reported illnesses rather than clinical

records, our results fall short of explaining long-term chronic illnesses and cancer. However, it

appears that the community is susceptible to feeling sick and bear the burden of the negative

externalities of pollution from mining.

3.2. Medical expenses

We now move on to the additional analyses of medical expenses and examine whether moving

away from a mining site also reduces medical expenses for individuals exposed to mining pollution.

We estimate an OLS regression on the annual medical expenses and report the results in columns

1 and 2 of Table 8. The results in the baseline and the preferred models are similar. As reported in

column 2, the annual medical expenses decline by 0.22 per cent as a person increases her distance

from a mine by one percent. The medical expenses analyses further support our argument that

pollution poses a negative externality to inhabitants affected by mining activities.

[Insert Table 8]

3.3. The effect of mining pollution on younger children

We next investigate whether soil pollution from mining affects different age groups dispropor-

tionately. Children and older people are more vulnerable and susceptible to feeling sick because of

their poorer immune systems (Landrigan et al., 2018). Children below the age of 14 go through

significant development changes that can have lasting effects on their well-being throughout their

adulthood. Also, children are more vulnerable because their body size is smaller than adults, and

their exposure to pollution may have more severe effects (Currie and Schmieder, 2009). Older

people may have been exposed to soil pollution for a longer time. The working-age population

between the ages of 15 and 64 runs the risk of occupational exposure to heavy metal pollution.
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They range from miners to smelters, gold refiners, and people working in the auxiliary sectors

such as trade, services, and transportation. Therefore, it is relevant to examine the effect of soil

pollution on each age group separately.

A sub-sample analysis is undertaken separately for each population segment. We estimate

Equation 1 and report the results for each age group in Table 9. Although the findings are

consistent across all age groups, the impact is most pronounced for younger children up to 14

years old. The coefficient estimate for age group 0-14 year-old (columns 1 and 2) is slightly higher

than the main finding in Table 4. As previously mentioned, children are more vulnerable, and

their probability of getting sick reduces by 1.9 percentage points if their distance to a mining site

increases by one per cent (column 2). Compared to younger children, soil pollution affects the

working-age population to a lesser extent, which is not statistically significant (columns 3 and 4).

Despite the small sample size for older people above the age of 65, the effect of soil heavy metal

pollution is highest for older people but, again, not statistically significant (columns 5 and 6).8

Therefore, mining pollution exerts a significant negative externality on younger children.9

[Insert Table 9]

3.4. The response of different body systems to mining pollution

Our third hypothesis tests whether the exposure to soil heavy metal pollution have a significant

effect on various body systems. Testing this hypothesis helps us understand if body systems react

differently to mining pollution. We estimate our primary model (Equation 1) on the illnesses of

body systems. The results are presented in Table 10. The effect on the respiratory illnesses are

reported in column 1, and indicates that the distance to the nearest mine adversely affects the

respiratory system. The results for the digestive, cardiovascular systems and other illnesses are in

columns 2-4 of Table 10. These results are not surprising as digestive and cardiovascular system

illnesses are not easily diagnosed and may take longer time for a patient to discover.

8This finding is expected as older people might have more prolonged exposure to soil pollution and a greater
build-up of heavy metals in their bodies if they have lived in the area for an extended period of time. Older people
may also have underlying health conditions that are exacerbated by soil pollution from mining. Long-term exposure
might result in the development of chronic illnesses in this population cohort.

9It is important to note that the effect of pollution on adults are confounded by other unobservable factors such
as their immune system which is less susceptible to the impacts of soil pollution.
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[Insert Table 10]

Compared to other body systems, respiratory illnesses are easily diagnosed as symptoms such

as coughing and shortness of breath can make a person immediately uncomfortable without having

to see a doctor. Besides common cold, such respiratory symptoms can also develop from exposure

to heavy metal pollution. For example, acute exposure to mercury vapor leads to cough, dizziness

and shortness of breath (Solis et al., 2000). Results from field surveys from artisanal and small-

scale mining areas in Mongolia indicate that there is higher risks of suffering from asthma and

tuberculosis among adults and increased prevalence of respiratory illnesses among children (Hugjliin

Ezed NGO and Swiss Agency for Development and Cooperation, (SDC), 2010; Human Rights

Commission and SDC, 2012). Although there is no a-priori expectation that mining activities

will affect all body systems, the findings imply that living closer to a mining area significantly

aggravates respiratory symptoms.

We control the seasonality of sickness by including quarter and month fixed-effects in our

model because the common cold is the most prevalent sickness during the cold winter months

from December to February in Mongolia (see Tables A.2 and A.3). The quarter and month fixed

effects do not alter the main results, suggesting that pollution, as captured by the distance to the

nearest mine, explains the likelihood of having respiratory illnesses in our model. The analysis on

different body systems reveals that soil pollution is a significant contributor for feeling unwell. The

respiratory tracts seem to be most affected by mining pollution, even after controlling for seasonal

nature of illnesses. Such a finding is expected as mining activities also produce substantial amount

of dust in the air (Li et al., 2014). The prevalence of respiratory illnesses among the inhabitants

living close to mines suggest that people who are environmentally exposed to pollution have higher

risks of developing more severe health conditions such as lung cancer and other chronic illnesses.

3.5. The effect of mine scale on morbidity

The next part of the analysis is concerned with the scale of mining practices. For example,

medium and large scale mines rely on heavy machinery and advanced technologies to extract

minerals. They are also more likely to enforce better safety standards for their workers and adhere
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to environmental regulations as they are licensed entities to operate mines. We refer to this

medium to large-scale mines as official license holders in our study. The extent they pollute

the environment can be large because of the scale of their mining practice. On the other hand,

small-scale miners are mostly unlicensed individuals and individuals partnered under one mining

license to extract minerals from the same mining site (Human Rights Commission and SDC, 2012).

Small-scale miners rely on various tools to mine and process minerals, and may pay less attention to

personal safety standards or environmental impacts due to their inadequate financial and technical

capabilities. As mentioned earlier, using mercury to separate gold from gold amalgam is a common

practice in developing countries.

Therefore, our next hypothesis tests whether licensed entities and small-scale mines affect

sickness differently. We undertake sub-sample analyses for individuals affected by each mine scale

separately. The results are reported in Table 11. The baseline results without control variables for

both official license holders, and small-scale mines are shown in columns 1 and 3, respectively. Both

estimates are qualitatively similar. However, the estimated impacts of small-scale mines appear to

be larger than that of the official license holders in our preferred model with the control variables

in column 4.

[Insert Table 11]

A person will be 1.7 percentage points less likely to feel sick if the distance from small-scale

mine is increased by one per cent. Compared to our main findings, the magnitude of the estimate

is slightly higher for small-scale mines (see Table 4). Together these results provide important

insights into the varying effects of mine scale on the health of communities nearby, especially the

severity of soil pollution from small-scale mines in developing countries.

3.6. The impact of different types of minerals mined on sickness

The final investigation looks at whether the types of minerals mined matter for feeling unwell.

We test the hypothesis that all minerals have no discernible effect on sickness by undertaking

sub-sample analysis for each mineral category. Gold, limestone, and coal are the primary minerals

that people are exposed to within six kilometres of their residential area. The results from the
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analysis of different minerals are reported in Table 12. The distance from the nearest gold mine

adversely affects sickness (column 2), limestone and other minerals such as coal, spar and wolfram

have similar effects although they are not statistically significant. Such an outcome can be due

to the lower number of observations for the other types if minerals. Taken together, these results

suggest that gold mines have a significant discernible effect on the likelihood of feeling sick.

[Insert Table 11]

The results in this section indicate that pollution from mining activities captured by soil pol-

lution adversely affects the health of nearby communities significantly. The four hypotheses we

tested all reveal that there is a causal link between mining pollution and sickness. Younger chil-

dren living within six kilometres of a polluted mine site are more prone to sickness. Besides, the

respiratory system is particularly sensitive to mining pollution. Small-scale mines have a bigger

effect on health than medium and larger mines, and gold mines also increase the chances of feeling

sick. However, our lower-bound effects of mining pollution on sickness is considerable and calls

for better environmental quality standards in resource-rich developing countries. Our results are

robust to the application of different estimation techniques that are discussed in the next section.

3.7. Robustness checks

Additional robustness checks are undertaken to confirm that the type of models used and biases

related to endogeneity and omitted variables do not drive our results. First, we repeat Tables 4-7

and Tables 9-12, using the LPM. Although the LPM does not predict a probability within the

boundary of zero and one perfectly, it provides a useful comparison to the logit model. The results

in Tables A.4 – A.10 are similar to the results from the logit model and support our findings. The

same applies to our exercise with a probit model.

Next, we use the principal component analysis (PCA) for an additional robustness test. The

PCA is a statistical technique for data reduction, which creates new uncorrelated variables-principal

components with the highest variance from a large dataset (Jolliffe and Cadima, 2016). Using the

PCA, we reduce the levels of seven types of heavy metals into three components, each component

grouping specific heavy metals together. Table A.11 presents the results for a principal component
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containing copper, mercury, and nickel. The estimate of the distance to the nearest mine is negative

and significant in columns 1 and 2, whereas the impact of the chosen principal component is

insignificant, similar to the results in Tables 6 and 7.10 In summary, the results from the LPM

and PCA confirm that soil pollution affects sickness at a significant level and our main findings are

robust.

4. Discussion

Our study provides an empirical evidence for the negative externality of mining industries that

arise from mining, refining, processing minerals, and disposing of chemicals into the environment.

There are three main findings in this paper. First, the distance to the nearest mine significantly

affects a person’s probability of feeling sick and the effect is considerably higher for children aged

0-14. This finding is concerning because early life exposure to neurotoxins such as lead and mercury

can affect cognitive abilities, disrupt concentration and behavior, leading to lifetime earnings loss

(Landrigan et al., 2018). These health impacts are irreversible and can have long-term and inter-

generational effects on well-being and earnings which will have further implications for productivity

loss.

Second, respiratory illnesses appear to be aggravated by exposure to soil pollution, as indicated

by a sub-sample analysis of those in the population who experienced respiratory diseases in the

past month. While we could only control for sickness seasonality through quarter and month

fixed effects, other pollution sources such as dust and particulate matter in the air may affect the

estimates. However, the soil pollution data and distance to the nearest mine are good indicators

to measure the impact of mining activities on health.

A third finding is that small-scale mining activities affect the health of those living nearby

mines, suggesting that environmental regulation monitoring, in general, is weak. While small-scale

miners use mercury and cyanide extensively in their mining practices, medium to large-scale mining

companies may release a significant amount of toxins and waste into the environment due to their

10We examined the other two components containing the rest of the heavy metals. However, the main variable of
interest, the distance to the nearest mine is not significant. The reason is that these two components do not contain
mercury which surpasses both trigger and action values.
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operations scale. However, the impact of small-scale mining on sickness is more significant com-

pared to fully licensed entities due to their low adherence to environmental regulations. Therefore,

mining activities at smaller-scale pose significant threats to the health of communities nearby the

mines.

On average, 533 people, who live within six kilometres of a mine, felt sick in the month prior

to the survey in our sample. However, this number represents 76,000 people. If these individuals

move one kilometre further away from a mine, they will be around one percentage point less likely

to feel sick.11 The one percentage point reduction translates into a 11.5 per cent overall reduction

in the number of people feeling unwell. In other words, over 8,700 fewer people would not have felt

sick if they were one kilometre away from a mining site.

The costs of feeling unwell are multiple. First, sickness deteriorates human physical and emo-

tional well-being, which have wider impact on labor supply and productivity (Graff Zivin and

Neidell, 2013; Hanna and Oliva, 2015). Second, it leads to school absences and lower performance

in the short-term and loss in lifetime earnings in the long-term (Neidell, 2004; Rau et al., 2015).

Third, pollution-related sicknesses and diseases incur intangible costs such as disruption of family

stability when a family member becomes ill or dies because of pollution, and loss in years of life to

the sick person (Landrigan et al., 2018). Moreover, both private (i.e., home care) and public costs

(i.e., hospital, physician and medical costs) are incurred to treat illnesses. For example, the annual

personal medical expenditures of $63 thousand could have been saved if 8,700 people moved one

kilometer away from a polluted mining site. Similarly, annual fiscal medical expenditures of $572

thousand are incurred for those who felt sick in the past month. Therefore, being environmentally

exposed to mining pollution costs over $635 thousand annually in addition to pains and sufferings

of the sick people.

Our estimates are likely to be lower-bound estimates of the impact of overall pollution from

mining on health as we cannot rule out the effect of other types of pollution such as air and

water pollution. Furthermore, the effect of long-term exposure to heavy metal pollutants may be

undetected in the absence of biometric information and clinical examinations of the population.

11This result arises from an examination of the change in the estimate when the distance is increased by one
kilometre.
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Nevertheless, these estimates are large in magnitude and suggest that living at a greater distance

from a mine would substantially benefit the communities exposed to mining activities. Therefore,

substantial economic and social benefits can be realized through the reduction of pollution from

mining activities with appropriate policies and institutions in place in resource-rich developing

countries.

5. Conclusion

We examined the impact of soil pollution on individuals’ likelihood of feeling sick when en-

vironmentally exposed to pollution from mining activities. Combining a geo-coded soil pollution

information with five rounds of household socioeconomic survey data from Mongolia, we exploit

the distance from an individual’s residential area to the nearest mine as the pollution exposure in

our model. We find that the exposure to mining pollution significantly increases the probability of

feeling sick within six kilometres of a mining site. Younger children appear to suffer the most from

mining pollution. Furthermore, respiratory illnesses are exacerbated by pollution, which can in-

crease the risks of developing chronic diseases such asthma among children. In addition, small-scale

gold mining activities adversely affect human health.

Our study provides a new empirical evidence on the effect of pollution from mining activities in a

resource-rich developing country. Unlike previous studies, we investigate different age groups, scales

of mines and mineral types that have not been examined in a holistic approach. The results are

lower-bound effects of overall pollution from mining activities as we are capturing overall pollution

with soil pollution data that is highly correlated with air and water pollution. Compared to air

pollution, soil pollution is not directly visible to the naked human eye, making it difficult for people

exposed to detect pollution and mitigate the risks of adverse health effects. Therefore, it might take

years before severe irreversible health problems occur in the community exposed tp pollution. We

contribute to the existing literature by investigating the impact of soil pollution from recent mining

activities and examining the early symptoms of potential chronic illnesses that could be induced by

exposure to heavy metal pollution in soil. The findings call for stricter environmental regulations of
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the mining industry and tighter monitoring of soil heavy metal pollution in resource-rich developing

countries.
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6. Tables

Table 1: Summary statistics of level of contamination

(precaution) (>precaution) (trigger) (>trigger) (action) (>action)
Heavy metal (1) (2) (3) (4) (5) (6)

Mercury (Hg) 2.0 0.99 10.0 0.93 20.0 0.39
(0.11) (0.25) (0.49)

Arsenic (As) 20.0 0.31 50.0 0.04 100.0 0.00
(0.46) (0.20) (0.07)

Lead (Pb) 100.0 0.02 500.0 0.00 1,200.0 0.00
(0.13) (0.00) (0.00)

Zinc (Zn) 300.0 0.00 500.0 0.00 1,000.0 0.00
(0.00) (0.00) (0.00)

Cadmium (Cd) 3.0 0.02 10.0 0.00 20.0 0.00
(0.13) (0.00) (0.00)

Copper (Cu) 100.0 0.00 500.0 0.00 1,000.0 0.00
(0.00) (0.00) (0.00)

Nickel (Ni) 150.0 0.00 600.0 0.00 1,000.0 0.00
(0.00) (0.00) (0.00)

N 6,713 6,713 6,713

Note: 1. A value that is above the precaution value indicates pollution of heavy metal in soil. Precaution
value and permissible value are the same.
2. A value exceeding the trigger value harms living organisms and water surfaces. A licensed entity in a
manufacturing and mining zones shall monitor the value.
3. A value exceeding the action value requires immediate action to clean the soil pollution. For example,
action such as neutralizing the pollution, removing the polluted soil, stopping land use and relocating
residents are required.
4. The sample consists of 39 mining sites that is within six kilometres of a residential area.
5. Standard deviations are recorded in the parentheses.

26



Table 2: Summary statistics of outcome
variables

Variable name Mean SD

Sick in the past month 0.08 0.27

Respiratory system illness 0.02 0.15

Digestive system illness 0.01 0.09

Cardiovascular system illness 0.02 0.13

External impact & other illness 0.03 0.17

Annual medical expenses 18.04 132.72

Number of observations 6,713

Note: 1. The mean of annual medical expenses are reported
in thousand Tugrik (MNT): The exchange rate for the end
of survey period (December) ranged from US$1≈MNT1,229
in 2008 to US$1≈MNT2,644 in 2018. All values are on per
capita monthly basis and adjusted for inflation.
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Table 3: Summary statistics of independent
variables

Variable name Mean SD

Distance to the nearest mine (km) 3.10 1.74

Distance to the nearest mercury (km) 3.09 1.74

Distance to the nearest arsenic (km) 3.07 1.73

Distance to the nearest lead (km) 3.40 1.66

Distance to the nearest zinc (km) 3.55 1.59

Distance to the nearest cadmium (km) 3.24 1.63

Distance to the nearest copper (km) 3.57 1.61

Distance to the nearest nickel (km) 3.46 1.66

Consumption per capita 147.8 105.1

Individual’s age (years) 29.3 19.8

Individual is female 0.51 0.50

Individual’s education (years) 8.14 5.63

Number of HH members 4.26 1.61

Lives in rural area 0.47 0.50

Number of observations 6,713

Note: 1. Consumption (monthly) per capita is reported in thou-
sand Tugrik (MNT): The exchange rate for the end of survey
period (December) ranged from US$1 ≈ MNT1,229 in 2008 to
US$1≈ MNT2,644 in 2018. All values are adjusted for inflation.
3. The distance to the nearest mine with heavy metal is not
the same as the distance to the nearest mine. Heavy metal con-
tamination within six kilometers is not required to be above the
precaution value. The number of observations varies for each
heavy metal.
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Table 4: The effect of mining pollution on sickness

Variable name (1) (2) (3) (4) (5) (6)

ln(distance to the nearest mine) -0.015∗∗ -0.020∗∗∗ -0.011∗∗ -0.016∗∗∗ -0.011∗∗ -0.014∗∗∗

(0.007) (0.007) (0.005) (0.005) (0.005) (0.005)
Individual is female 0.009 0.009 0.009

(0.007) (0.006) (0.006)
Individual’s age (years) 0.008∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(0.002) (0.001) (0.001)
Individual’s education (years) -0.012∗∗∗ -0.009∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.001)
Number of HH members -0.295∗∗∗ -0.213∗∗∗ -0.182∗∗∗

(0.079) (0.058) (0.053)
Consumption per capita -0.311∗∗∗ -0.223∗∗∗ -0.190∗∗∗

(0.085) (0.063) (0.057)
Lives in rural area -0.042 -0.040 -0.037

(0.034) (0.047) (0.048)
2010 0.036∗ 0.028∗ 0.022

(0.020) (0.015) (0.014)
2014 0.020 0.009 0.005

(0.019) (0.016) (0.015)
2016 0.012 0.000 -0.005

(0.020) (0.016) (0.015)
2018 0.063∗∗∗ 0.044∗∗ 0.036∗∗

(0.024) (0.019) (0.017)

Model LPM LPM Probit Probit Logit Logit
Sub-province fixed effects Yes Yes Yes Yes Yes Yes
R2/Psedu R2 0.01 0.04 0.02 0.07 0.02 0.07
N 6,713 6,713 6,713 6,713 6,713 6,713

Note: 1. Standard errors, clustered at the household level, are recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed in this table.
3. Marginal effects are calculated at the means of all other covariates from the probit and logit models.
* p <0.10, ** p <0.05, *** p <0.01.
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Table 5: The effect of mining pollution on sickness: using distance from the nearest mine with
particular types of heavy metal contamination

Variable name (1) (2) (3) (4) (5) (6) (7)

ln(distance to Mercury) -0.014∗∗∗

(0.005)
ln(distance to Arsenic) -0.014∗∗∗

(0.005)
ln(distance to Lead) -0.014∗∗

(0.006)
ln(distance to Zinc) -0.014∗∗

(0.006)
ln(distance to Cadmium) -0.017∗∗∗

(0.006)
ln(distance to Copper) -0.017∗∗∗

(0.006)
ln(distance to Nickel) -0.015∗∗∗

(0.006)
Individual is female 0.008 0.010∗ 0.014∗∗ 0.014∗∗ 0.016∗∗ 0.014∗∗ 0.014∗∗

(0.006) (0.006) (0.006) (0.007) (0.006) (0.007) (0.007)
Individual’s age (years) 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Individual’s education (years) -0.008∗∗∗ -0.008∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.009∗∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of HH members -0.181∗∗∗ -0.175∗∗∗ -0.204∗∗∗ -0.211∗∗∗ -0.215∗∗∗ -0.208∗∗∗ -0.204∗∗∗

(0.053) (0.055) (0.060) (0.061) (0.061) (0.061) (0.061)
Consumption per capita -0.190∗∗∗ -0.182∗∗∗ -0.213∗∗∗ -0.221∗∗∗ -0.226∗∗∗ -0.218∗∗∗ -0.213∗∗∗

(0.057) (0.060) (0.065) (0.066) (0.066) (0.066) (0.066)
Lives in rural area 0.011 0.017 0.039 0.079 0.075 0.071 -0.030

(0.048) (0.051) (0.048) (0.052) (0.052) (0.051) (0.054)
2010 0.023∗ 0.023 0.018 0.014 0.020 0.014 0.013

(0.014) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
2014 0.006 0.005 0.001 -0.003 0.003 -0.004 -0.006

(0.015) (0.015) (0.016) (0.016) (0.016) (0.016) (0.016)
2016 -0.003 -0.009 -0.018 -0.025 -0.017 -0.025 -0.026

(0.016) (0.016) (0.018) (0.018) (0.018) (0.018) (0.018)
2018 0.039∗∗ 0.037∗∗ 0.037∗ 0.034∗ 0.040∗∗ 0.033∗ 0.032

(0.018) (0.018) (0.020) (0.020) (0.020) (0.020) (0.020)

Sub-province fixed effects Yes Yes Yes Yes Yes Yes Yes
Psedu R2 0.07 0.07 0.07 0.07 0.07 0.08 0.08
N 6,703 6,320 5,611 5,424 5,565 5,446 5,358

Note: 1. The impact of contamination is estimated by distance to the highest level of each heavy metal within 6
kilometres. Since most contaminants coexist at a mining site, this analysis looks at the impact of highest contamination
level of each heavy metal on sickness within 6 kilometres. We assume that the effect of other contaminants are captured
by specific contaminant examined by the distance. Since some heavy metals are not reported in some sites, the number
of observations differ for each heavy metal.
2. Standard errors, clustered at the household level, are recorded in the parentheses.
3. Marginal effects are calculated at the means of all other covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.

30



Table 6: The effect of mining pollution on
sickness: including the level of pollution in the

model

Variable name (1) (2)

ln(distance to the nearest mine) -0.019∗∗ -0.020∗∗∗

(0.008) (0.007)
ln(Arsenic pollution level) 0.017 0.018

(0.016) (0.015)
ln(Mercury pollution level) -0.045 -0.036

(0.029) (0.028)
Individual is female 0.009

(0.006)
Individual’s age (years) 0.005∗∗∗

(0.001)
Individual’s education (years) -0.008∗∗∗

(0.001)
Number of HH members -0.183∗∗∗

(0.053)
Consumption per capita -0.191∗∗∗

(0.057)
Lives in rural area 0.010

(0.062)
2010 0.022

(0.014)
2014 0.006

(0.015)
2016 -0.004

(0.015)
2018 0.038∗∗

(0.017)

Sub-province fixed effects Yes Yes
Psedu R2 0.02 0.07
N 6,713 6,713

Note: 1. Standard errors, clustered at the household level, are
recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed
in this table.
3. Marginal effects are calculated at the means of all other
covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table 7: The effect of mining pollution on
sickness: controlling for the nonlinear effect of

pollution level

Variable name (1) (2)

ln(distance to the nearest mine) -0.016∗∗ -0.017∗∗

(0.008) (0.007)
Hg above action value -0.016 -0.009

(0.017) (0.016)
Individual is female 0.009

(0.006)
Individual’s age (years) 0.005∗∗∗

(0.001)
Individual’s education (years) -0.008∗∗∗

(0.001)
Number of HH members -0.182∗∗∗

(0.053)
Consumption per capita -0.190∗∗∗

(0.057)
Lives in rural area -0.024

(0.053)
2010 0.022

(0.014)
2014 0.005

(0.015)
2016 -0.004

(0.015)
2018 0.037∗∗

(0.017)

Sub-province fixed effects Yes Yes
Psedu R2 0.02 0.07
N 6,713 6,713

Note: 1. In order to account for the nonlinear effects of pollution
level, we include a dummy variable for individuals exposed to
mercury pollution level that is above the action value. 39 per-
cent of the individuals are exposed to mercury pollution that
is considered very harmful to the population exposed where as
over 30 percent of individuals are exposed to arsenic pollution.
Therefore, we include a dummy taking the value of one for those
exposed to high mercury pollution level and zero otherwise.
2. Distance to each heavy metal is 6 kilometres.
3. Standard errors, clustered at the household level, are recorded
in the parentheses.
4. Marginal effects are calculated at the means of all other co-
variates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table 8: The effect of mining pollution on medical
expenses

ln(medical expenses)

Variable names (1) (2)

ln(distance to the nearest mine) -0.175∗∗ -0.219∗∗∗

(0.082) (0.079)
Individual is female 0.191∗∗

(0.083)
Individual’s age (years) 0.077∗∗∗

(0.020)
Individual’s education (years) -0.062∗∗

(0.026)
Number of HH members -1.976∗∗

(0.973)
Consumption per capita -2.093∗∗

(1.051)
Lives in rural area 0.786

(0.563)
2010 0.014

(0.199)
2014 0.269

(0.247)
2016 0.332

(0.250)
2018 0.532∗

(0.291)

Sub-province fixed effects Yes Yes
R2 0.02 0.07
N 6,713 6,713

Note: 1. Standard errors, clustered at the household level, are
recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed
in this table.
3. Marginal effects are calculated at the means of all other
covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table 9: The effect of mining pollution on medical expenses and sickness for
different age groups

Age: 0-14 years Age: 15-65 years Age: 65+ years

Variable names (1) (2) (3) (4) (5) (6)

ln(distance to the nearest mine) -0.023∗∗∗ -0.019∗∗∗ -0.006 -0.008∗ -0.078 -0.074
(0.009) (0.007) (0.005) (0.005) (0.051) (0.053)

Individual is female 0.002 0.012∗ -0.111∗

(0.010) (0.006) (0.058)
Individual’s age (years) -0.006∗ 0.006∗∗∗ 0.006

(0.003) (0.001) (0.013)
Individual’s education (years) -0.000 -0.006∗∗∗ -0.021

(0.006) (0.002) (0.018)
Number of HH members 0.047 -0.221∗∗∗ -0.329

(0.163) (0.064) (0.558)
Consumption per capita 0.062 -0.233∗∗∗ -0.353

(0.177) (0.069) (0.621)
Lives in rural area 0.030 -0.010 0.357

(0.061) (0.048) (0.388)
2010 0.086∗ 0.005 0.100

(0.045) (0.014) (0.115)
2014 0.072 -0.010 -0.109

(0.049) (0.016) (0.157)
2016 0.063 -0.026 -0.079

(0.051) (0.017) (0.153)
2018 0.069 0.024 0.017

(0.057) (0.019) (0.182)

Sub-province fixed effects Yes Yes Yes Yes Yes Yes
Psedu R2 0.04 0.08 0.02 0.08 0.04 0.09
N 1,781 1,781 4,488 4,488 256 256

Note: 1. Standard errors, clustered at the household level, are recorded in the parentheses.
2. Sub-provinces, where sickness is not reported, are dropped from the logit model as there is no variation
in the outcome variable in the sub-sample analysis.
3. Individuals living at a proximity of up to 6 km are analyzed in this table.
4. Marginal effects are calculated at the means of all other covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table 10: The effect of mining pollution on body system illnesses

Respiratory Digestive Cardiovascular Other illnesses
Variable name (1) (2) (3) (4)

ln(distance to the nearest mine) -0.0063∗∗∗ -0.0006 -0.0004 -0.0039
(0.0021) (0.0013) (0.0010) (0.0026)

Individual is female 0.0030 0.0003 0.0027 0.0020
(0.0026) (0.0015) (0.0014) (0.0033)

Individual’s age (years) 0.0003 0.0002∗ 0.0004∗∗∗ 0.0010∗∗∗

(0.0003) (0.0001) (0.0001) (0.0002)
Individual’s education (years) -0.0019∗∗∗ 0.0001 -0.0000∗ -0.0007∗

(0.0004) (0.0002) (0.0002) (0.0004)
Number of HH members -0.0047∗∗∗ -0.0012∗∗ -0.0009 0.0000

(0.0013) (0.0006) (0.0005) (0.0011)
Consumption per capita -0.0121∗∗ -0.0001 -0.0006∗∗ -0.0125∗∗

(0.0060) (0.0020) (0.0019) (0.0057)
Lives in rural area 0.0218 0.0126∗∗∗ -0.0048 0.0031

(0.0171) (0.0045) (0.0084) (0.0178)
2010 0.0141∗ -0.0011 -0.0059∗ 0.0146∗

(0.0082) (0.0029) (0.0031) (0.0081)
2014 0.0082 -0.0088∗∗∗ -0.0059 0.0082

(0.0078) (0.0028) (0.0025) (0.0067)
2016 0.0114 -0.0074∗∗∗ -0.0086 -0.0025

(0.0077) (0.0027) (0.0028) (0.0075)
2018 0.0121 -0.0037 -0.0035∗∗ 0.0136∗∗

(0.0076) (0.0027) (0.0026) (0.0069)

Sub-province fixed effects Yes Yes Yes Yes
Psedu R2 0.09 0.11 0.18 0.06
N 6,282 5,039 6,179 6,587

Note: 1. Standard errors, clustered at the household level, are recorded in the parentheses.
2. Sub-provinces, where sickness of for a particular body system is not reported, are dropped from the
logit model as there is no variation in the outcome variable in the sub-sample analysis.
3. Individuals living at a proximity of up to 6 km are analyzed in this table.
4. Marginal effects are calculated at the means of all other covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.

35



Table 11: The effect of mining scale on sickness

Mining license holders Small-scale miners

Variable name (1) (2) (3) (4)

ln(distance to the nearest mine) -0.006 -0.008 -0.014∗∗ -0.017∗∗∗

(0.009) (0.008) (0.006) (0.006)
Individual is female 0.001 0.022∗∗

(0.007) (0.009)
Individual’s age (years) 0.002∗∗∗ 0.003∗∗∗

(0.000) (0.001)
Individual’s education (years) -0.004∗∗∗ -0.005∗∗∗

(0.001) (0.001)
Number of HH members -0.005∗ -0.011∗∗∗

(0.003) (0.003)
Consumption per capita -0.026∗∗ -0.031∗

(0.010) (0.016)
Lives in rural area -0.005 -0.050

(0.041) (0.053)
2010 0.062∗∗∗ -0.023

(0.022) (0.018)
2014 -0.008 -0.026

(0.018) (0.017)
2016 -0.018 -0.033∗

(0.019) (0.017)
2018 0.004 0.004

(0.019) (0.017)

Sub-province fixed effects Yes Yes Yes Yes
Psedu R2 0.02 0.09 0.02 0.07
N 3,338 3,338 3,343 3,343

Note: 1. Standard errors, clustered at the household level, are recorded in the paren-
theses.
2. Sub-provinces, where sickness is not reported, are dropped from the logit model
as there is no variation in the outcome variable in the sub-sample analysis.
3. Individuals living at a proximity of up to 6 km are analyzed in this table.
4. Marginal effects are calculated at the means of all other covariates from the logit
model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table 12: The effect of mineral type on sickness

Gold Limestone Other

Variable name (1) (2) (3) (4) (5) (6)

ln(distance to the nearest mine) -0.013∗∗ -0.015∗∗∗ -0.011 -0.007 0.005 -0.017
(0.006) (0.005) (0.061) (0.020) (0.042) (0.020)

Individual is female 0.014∗ 0.002 0.010
(0.007) (0.004) (0.011)

Individual’s age (years) 0.003∗∗∗ 0.001∗∗∗ 0.002∗∗∗

(0.001) (0.000) (0.001)
Individual’s education (years) -0.005∗∗∗ -0.001∗ -0.003∗∗

(0.001) (0.001) (0.001)
Number of HH members -0.009∗∗∗ -0.002 -0.007∗

(0.003) (0.002) (0.004)
Consumption per capita -0.025∗ -0.022∗∗ -0.020

(0.013) (0.009) (0.019)
Lives in rural area -0.094∗ 0.030 0.061

(0.050) (0.043) (0.065)
2010 -0.016 0.017∗∗ 0.031

(0.018) (0.008) (0.032)
2014 -0.012 -0.027∗∗∗ -0.009

(0.015) (0.010) (0.031)
2016 -0.028∗ -0.028∗∗ -0.004

(0.016) (0.014) (0.029)
2018 0.024 -0.041∗∗∗ -0.021

(0.016) (0.016) (0.032)

Sub-province fixed effects Yes Yes Yes Yes Yes Yes
Psedu R2 0.02 0.07 0.01 0.29 0.00 0.06
N 4,327 4,327 904 904 1,450 1,450

Note: 1. Standard errors, clustered at the household level, are recorded in the parentheses.
2. Sub-provinces, where sickness is not reported, are dropped from the logit model as there is no
variation in the outcome variable in the sub-sample analysis.
3. Individuals living at a proximity of up to 6 km are analyzed in this table.
4. Marginal effects are calculated at the means of all other covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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7. Additional tables

Table A.1: Cross-correlation table

Variables Mercury Arsenic Lead Zinc Cadmium Copper Nickel

Mercury 1.000
Arsenic -0.042 1.000
Lead 0.506 0.348 1.000
Zinc 0.114 0.690 0.681 1.000
Cadmium 0.497 0.271 0.977 0.656 1.000
Copper 0.307 0.418 0.762 0.542 0.769 1.000
Nickel 0.439 -0.042 0.329 0.114 0.365 0.519 1.000
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Table A.2: The effect of mining pollution on sickness

Sick Respiratory Digestive Cardiovascular Other illnesses
Variable name (1) (2) (3) (4) (5)

ln(distance to the nearest mine) -0.013∗∗∗ -0.005∗∗ -0.001 -0.000 -0.004
(0.005) (0.002) (0.001) (0.001) (0.003)

Individual is female 0.012∗∗ 0.003 0.000 0.003∗ 0.002
(0.006) (0.003) (0.002) (0.002) (0.003)

Individual’s age (years) 0.003∗∗∗ 0.000 0.000∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Individual’s education (years) -0.005∗∗∗ -0.002∗∗∗ 0.000 -0.000 -0.001∗

(0.001) (0.000) (0.000) (0.000) (0.000)
Consumption per capita -0.031∗∗∗ -0.010 -0.001 -0.001 -0.014∗∗

(0.011) (0.007) (0.003) (0.002) (0.006)
Lives in rural area -0.006 0.019 0.013∗∗ -0.006 0.005

(0.046) (0.019) (0.006) (0.009) (0.018)
Quarter 2 -0.019∗∗ -0.013∗∗∗ 0.004 0.001 -0.004

(0.009) (0.004) (0.003) (0.002) (0.005)
Quarter 3 -0.042∗∗∗ -0.028∗∗∗ 0.003 -0.001 -0.004

(0.010) (0.005) (0.003) (0.003) (0.005)
Quarter 4 -0.044∗∗∗ -0.021∗∗∗ 0.003 -0.002 -0.014∗∗

(0.010) (0.005) (0.003) (0.003) (0.006)
2010 0.024∗ 0.015∗ -0.001 -0.007∗ 0.015∗

(0.014) (0.008) (0.003) (0.004) (0.008)
2014 -0.017 0.006 -0.009∗∗∗ -0.006∗ 0.007

(0.012) (0.007) (0.003) (0.003) (0.007)
2016 -0.026∗∗ 0.009 -0.008∗∗∗ -0.009∗∗∗ -0.004

(0.013) (0.007) (0.003) (0.003) (0.007)
2018 0.011 0.012∗ -0.003 -0.003 0.014∗∗

(0.013) (0.007) (0.003) (0.003) (0.007)

Sub-province fixed effects Yes Yes Yes Yes Yes
Psedu R2 0.08 0.11 0.11 0.06 0.18
N 6,713 6,282 5,039 6,587 6,179

Note: 1. Standard errors clustered at the household level are recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed in this table.
3. Marginal effects are calculated at the means of all other covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.3: The effect of mining on sickness

Sick Respiratory Digestive Cardiovascular Other illnesses
Variable name (1) (2) (3) (4) (5)

ln(distance to the nearest mine) -0.013∗∗∗ -0.005∗∗ -0.001 -0.000 -0.004
(0.005) (0.002) (0.001) (0.001) (0.003)

Individual is female 0.012∗∗ 0.003 0.000 0.003∗ 0.002
(0.006) (0.002) (0.002) (0.001) (0.003)

Individual’s age (years) 0.003∗∗∗ 0.000 0.000∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Individual’s education (years) -0.005∗∗∗ -0.002∗∗∗ 0.000 -0.000 -0.001∗

(0.001) (0.000) (0.000) (0.000) (0.000)
Consumption per capita -0.031∗∗∗ -0.009 -0.000 -0.001 -0.014∗∗

(0.010) (0.006) (0.002) (0.002) (0.006)
Lives in rural area 0.006 0.024 0.011∗∗ -0.002 0.005

(0.046) (0.020) (0.006) (0.009) (0.018)
February -0.012 -0.003 -0.002 -0.006 -0.002

(0.014) (0.005) (0.005) (0.004) (0.008)
March -0.028∗ -0.006 -0.005 -0.001 -0.014

(0.016) (0.006) (0.006) (0.004) (0.010)
April -0.036∗∗ -0.016∗∗ -0.003 -0.000 -0.008

(0.016) (0.007) (0.005) (0.004) (0.010)
May -0.042∗∗∗ -0.015∗∗ 0.001 -0.002 -0.012

(0.014) (0.006) (0.004) (0.004) (0.009)
June -0.020 -0.014∗∗ 0.004 -0.000 -0.006

(0.014) (0.006) (0.003) (0.003) (0.008)
July -0.062∗∗∗ -0.026∗∗∗ 0.000 -0.009∗∗ -0.009

(0.016) (0.007) (0.004) (0.004) (0.009)
August -0.044∗∗∗ -0.053∗∗∗ 0.003 -0.002 0.002

(0.016) (0.011) (0.004) (0.004) (0.008)
September -0.050∗∗∗ -0.019∗∗∗ 0.000 0.001 -0.021∗∗

(0.015) (0.007) (0.004) (0.004) (0.010)
October -0.052∗∗∗ -0.035∗∗∗ 0.006 0.001 -0.022∗∗

(0.017) (0.010) (0.004) (0.004) (0.010)
November -0.066∗∗∗ -0.019∗∗∗ -0.001 -0.007∗ -0.024∗∗

(0.015) (0.006) (0.004) (0.004) (0.010)
December -0.048∗∗∗ -0.019∗∗∗ 0.001 -0.005 -0.011

(0.016) (0.006) (0.004) (0.004) (0.008)
2010 0.025∗ 0.015∗∗ -0.001 -0.007∗∗ 0.015∗

(0.014) (0.007) (0.003) (0.004) (0.008)
2014 -0.015 0.008 -0.008∗∗∗ -0.006∗∗ 0.007

(0.013) (0.007) (0.003) (0.003) (0.007)
2016 -0.026∗∗ 0.010 -0.008∗∗∗ -0.009∗∗∗ -0.005

(0.013) (0.007) (0.003) (0.003) (0.007)
2018 0.012 0.013∗ -0.004 -0.003 0.014∗

(0.013) (0.007) (0.003) (0.003) (0.007)

Sub-province fixed effects Yes Yes Yes Yes Yes
Psedu R2 0.08 0.12 0.12 0.07 0.20
N 6,713 6,282 5,039 6,587 6,179

Note: 1. Standard errors clustered at the household level are recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed in this table.
3. Marginal effects are calculated at the means of all other covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.4: The effect of mining pollution on sickness, by distance to heavy metal

Sick

Variable name (1) (2) (3) (4) (5) (6) (7)

ln(distance to Mercury) -0.021∗∗∗

(0.007)
ln(distance to Arsenic) -0.020∗∗∗

(0.007)
ln(distance to Lead) -0.019∗∗

(0.008)
ln(distance to Zinc) -0.019∗∗

(0.008)
ln(distance to Cadmium) -0.024∗∗∗

(0.008)
ln(distance to Copper) -0.023∗∗∗

(0.008)
ln(distance to Nickel) -0.020∗∗

(0.008)

Individual is female
0.014∗∗ 0.016∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.022∗∗∗ 0.020∗∗∗ 0.020∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007)
Individual’s age
(years)

0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Individual’s education
(years)

-0.006∗∗∗ -0.006∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Consumption per
capita

-0.042∗∗∗ -0.039∗∗∗ -0.046∗∗∗ -0.048∗∗∗ -0.049∗∗∗ -0.047∗∗∗ -0.046∗∗∗

(0.014) (0.014) (0.015) (0.015) (0.015) (0.015) (0.015)

Lives in rural area
0.000 -0.021 0.002 0.040 0.036 -0.034 -0.005

(0.031) (0.022) (0.039) (0.048) (0.048) (0.021) (0.024)

2010
0.029 0.028 0.019 0.013 0.020 0.013 0.013

(0.019) (0.019) (0.020) (0.020) (0.020) (0.020) (0.020)

2014
-0.014 -0.013 -0.021 -0.028∗ -0.021 -0.029∗ -0.031∗

(0.015) (0.015) (0.016) (0.017) (0.016) (0.017) (0.017)

2016
-0.021 -0.025∗ -0.038∗∗ -0.047∗∗∗ -0.038∗∗ -0.047∗∗∗ -0.046∗∗∗

(0.015) (0.015) (0.016) (0.017) (0.016) (0.017) (0.017)

2018
0.014 0.014 0.008 0.002 0.009 0.001 0.003

(0.016) (0.016) (0.017) (0.018) (0.017) (0.018) (0.018)

Sub-province fixed effects Yes Yes Yes Yes Yes Yes Yes
R2 0.04 0.04 0.04 0.04 0.05 0.05 0.05
N 6,772 6,528 5,680 5,493 5,634 5,547 5,459

Note: 1. The impact of contamination is estimated by distance to the highest level of each heavy metal within 6 kilometres.
Since most contaminants coexist at a mining site, this analysis looks at the impact of highest contamination level of each heavy
metal on sickness within 6 kilometres. We assume that the effect of other contaminants are captured by specific contaminant
examined by the distance.
2. Standard errors clustered at the household level are recorded in the parentheses.
3. Marginal effects are calculated at the means of all other covariates from the linear probability model.
* p <0.10, ** p <0.05, *** p <0.01.

41



Table A.5: The effect of mining pollution level on
sickness

Sick

Variable name (1) (2)

ln(distance to the nearest mine) -0.024∗∗ -0.029∗∗∗

(0.010) (0.010)
ln(Arsenic pollution level) 0.021 0.027∗∗

(0.017) (0.010)
ln(Mercury pollution level) -0.050 -0.049

(0.038) (0.037)
Individual is female 0.014

(0.009)
Individual’s age (years) 0.004∗∗∗

(0.001)
Individual’s education (years) -0.007∗∗∗

(0.001)
Consumption per capita -0.043∗∗∗

(0.012)
Lives in rural area 0.063

(0.058)
2010 0.029

(0.036)
2014 -0.012

(0.018)
2016 -0.021

(0.024)
2018 0.016

(0.024)

Sub-province fixed effects Yes Yes
R2 0.01 0.04
N 6,713 6,713

Note: 1. Standard errors clustered at the household level are
recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed
in this table.
3. Marginal effects are calculated at the means of all other
covariates from the linear probability model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.6: The effect of mining pollution level on sickness in
a nonlinear form

Sick

Variable name (1) (2) (3)

ln(distance to the nearest mine) -0.033∗∗∗ -0.025∗∗∗ -0.024∗∗

(0.009) (0.008) (0.009)
As above trigger value 0.062∗∗ 0.053∗∗

(0.026) (0.026)
Hg above action value -0.024 -0.009

(0.021) (0.024)
Individual is female 0.014∗∗ 0.014∗∗ 0.014

(0.006) (0.006) (0.009)
Individual’s age (years) 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001)
Individual’s education (years) -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.001)
Consumption per capita -0.042∗∗∗ -0.042∗∗∗ -0.042∗∗∗

(0.014) (0.014) (0.012)
Lives in rural area 0.041 0.007 0.013

(0.042) (0.031) (0.034)
2010 0.029 0.029 0.029

(0.019) (0.019) (0.036)
2014 -0.013 -0.014 -0.013

(0.015) (0.015) (0.018)
2016 -0.021 -0.022 -0.020

(0.015) (0.015) (0.023)
2018 0.015 0.014 0.015

(0.016) (0.016) (0.024)

Sub-province fixed effects Yes Yes Yes
R2 0.04 0.04 0.04
N 6,713 6,713 6,713

Note: 1. In order to allow nonlinear effects of pollution, we estimate the inten-
sity of pollution by creating dummy variables for different levels of pollution.
The mean of mercury is above the action value whereas the mean of arsenic is
above the precaution (permissible) value. All other heavy metals are within
the precaution level, indicating that soil is not polluted by cadmium, copper,
nickel, lead and zinc.
2. Distance to each heavy metal is 6 kilometres.
3. Standard errors clustered at the household level are recorded in the paren-
theses.
4. Marginal effects are calculated at the means of all other covariates from the
linear probability model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.7: The effect of mining pollution on sickness for different age groups

Age: 0-14 years Age: 15-65 years Age: 65+ years

Variable names (1) (2) (3) (4) (5) (6)

ln(distance to the nearest mine) -0.035∗∗ -0.035∗∗ -0.008 -0.012 -0.090 -0.083
(0.015) (0.014) (0.007) (0.007) (0.063) (0.064)

Individual is female -0.000 0.021∗∗∗ -0.096∗

(0.011) (0.007) (0.057)
Individual’s age (years) -0.007∗∗∗ 0.004∗∗∗ 0.002

(0.002) (0.001) (0.006)
Individual’s education (years) 0.001 -0.001 -0.015∗

(0.003) (0.001) (0.009)
Consumption per capita 0.019 -0.027∗∗ -0.062

(0.031) (0.013) (0.078)
Lives in rural area 0.011 0.033 0.269

(0.031) (0.049) (0.384)
2010 0.062∗ 0.005 0.140

(0.035) (0.022) (0.134)
2014 0.047∗ -0.046∗∗∗ -0.123

(0.027) (0.017) (0.110)
2016 0.034 -0.057∗∗∗ -0.087

(0.030) (0.018) (0.115)
2018 0.046 -0.015 -0.025

(0.031) (0.019) (0.118)

Sub-province fixed effects Yes Yes Yes Yes Yes Yes
R2 0.03 0.04 0.01 0.04 0.05 0.11
N 1,915 1,915 4,536 4,536 262 262

Note: 1. Standard errors clustered at the household level are recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed in this table.
3. Marginal effects are calculated at the means of all other covariates from the linear probability model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.8: The effect of mining pollution on body system illnesses

Respiratory Digestive Cardiovascular Other illnesses
Variable name (1) (2) (3) (4)

ln(distance to the nearest mine) -0.0127∗∗∗ -0.0012 -0.0006∗∗∗ -0.0056∗∗∗

(0.0012) (0.0046) (0.0014) (0.0006)
Individual is female 0.0049 0.0006 0.0067 0.0025

(0.0051) (0.0012) (0.0042) (0.0032)
Individual’s age (years) 0.0002 0.0004∗∗∗ 0.0017∗∗∗ 0.0017∗∗∗

(0.0003) (0.0001) (0.0004) (0.0003)
Individual’s education (years) -0.0028∗∗∗ -0.0002 -0.0021∗∗∗ -0.0016∗∗∗

(0.0006) (0.0003) (0.0004) (0.0005)
Consumption per capita -0.0105∗ -0.0011 -0.0100∗∗∗ -0.0201∗∗∗

(0.0056) (0.0023) (0.0047) (0.0052)
Lives in rural area -0.0076 0.0393∗∗∗ -0.0132∗∗ -0.0161∗∗

(0.0053) (0.0073) (0.0049) (0.0066)
2010 0.0202∗∗∗ -0.0030 -0.0112 0.0206

(0.0072) (0.0024) (0.0050) (0.0137)
2014 0.0094 -0.0112∗∗ -0.0092∗∗ 0.0120∗∗

(0.0064) (0.0043) (0.0068) (0.0047)
2016 0.0146∗∗ -0.0104∗∗ -0.0126 0.0017

(0.0068) (0.0041) (0.0059) (0.0077)
2018 0.0152∗ -0.0048 -0.0023∗ 0.0199∗

(0.0073) (0.0050) (0.0070) (0.0102)

Sub-province fixed effects Yes Yes Yes Yes
R2 0.02 0.01 0.04 0.02
N 6,713 6,713 6,713 6,713

Note: 1. Standard errors clustered at the household level are recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed in this table.
3. Marginal effects are calculated at the means of all other covariates from the linear probability model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.9: The effect of mining scale on sickness

Mining license holders Small-scale mining

Variable name (1) (2) (3) (4)

ln(distance to the nearest mine) -0.010 -0.013 -0.018∗∗ -0.024∗∗∗

(0.014) (0.014) (0.009) (0.009)
Individual is female 0.002 0.031∗∗∗

(0.008) (0.011)
Individual’s age (years) 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001)
Individual’s education (years) -0.006∗∗∗ -0.008∗∗∗

(0.001) (0.002)
Consumption per capita -0.043∗∗ -0.047∗∗

(0.017) (0.024)
Lives in rural area -0.028 -0.077∗∗∗

(0.025) (0.030)
2010 0.091∗∗∗ -0.021

(0.028) (0.025)
2014 0.004 -0.031

(0.017) (0.023)
2016 -0.004 -0.045∗

(0.017) (0.024)
2018 0.019 0.032

(0.018) (0.027)

Sub-province fixed effects Yes Yes Yes Yes
R2 0.01 0.05 0.01 0.05
N 3,370 3,370 2,835 2,835

Note: 1. Standard errors clustered at the household level are recorded in the paren-
theses.
2. Individuals living at a proximity of up to 6 km are analyzed in this table.
3. Marginal effects are calculated at the means of all other covariates from the linear
probability model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.10: The effect of mineral type on sickness

Gold Limestone Other

Variable name (1) (2) (3) (4) (5) (6)

ln(distance to the nearest mine) -0.016∗∗ -0.020∗∗∗ -0.010 -0.028 0.005 -0.011
(0.007) (0.007) (0.060) (0.052) (0.046) (0.049)

Individual is female 0.017∗∗ 0.002 0.013
(0.008) (0.011) (0.012)

Individual’s age (years) 0.004∗∗∗ 0.006∗∗∗ 0.003∗∗

(0.001) (0.001) (0.001)
Individual’s education (years) -0.007∗∗∗ -0.007∗∗∗ -0.005∗∗∗

(0.001) (0.002) (0.002)
Consumption per capita -0.033∗ -0.083∗∗∗ -0.026

(0.018) (0.029) (0.028)
Lives in rural area -0.099∗∗∗ 0.077 0.046

(0.013) (0.160) (0.117)
2010 -0.009 0.101∗∗ 0.056

(0.022) (0.046) (0.043)
2014 -0.007 -0.052∗ 0.005

(0.019) (0.028) (0.036)
2016 -0.023 -0.050∗ 0.014

(0.019) (0.029) (0.037)
2018 0.040∗ -0.061∗∗ -0.004

(0.021) (0.027) (0.038)

Sub-province fixed effects Yes Yes Yes Yes Yes Yes
R2 0.01 0.04 0.00 0.13 0.00 0.03
N 4,359 4,359 904 904 1,450 1,450

Note: 1. Standard errors clustered at the household level are recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are analyzed in this table.
3. Marginal effects are calculated at the means of all other covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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Table A.11: The effect of mining pollution on
sickness – Principal component analysis

Sick

Variable name (1) (2)

ln(distance to the nearest mine) -0.017∗∗ -0.019∗∗∗

(0.007) (0.007)
Component: Cu, Hg, Ni -0.015 -0.009

(0.013) (0.012)
Individual is female 0.013∗∗

(0.005)
Individual’s age (years) 0.003∗∗∗

(0.000)
Individual’s education (years) -0.004∗∗∗

(0.001)
Consumption per capita -0.026∗∗∗

(0.009)
Lives in rural area 0.038

(0.081)
2010 0.026∗

(0.014)
2014 -0.010

(0.012)
2016 -0.017

(0.013)
2018 0.014

(0.013)
Sub-province fixed Effects Yes Yes
Psedu R2 0.02 0.07
N 6,713 6,713

Note: 1. Standard errors clustered at the household level
are recorded in the parentheses.
2. Individuals living at a proximity of up to 6 km are ana-
lyzed in this table.
3. Marginal effects are calculated at the means of all other
covariates from the logit model.
* p <0.10, ** p <0.05, *** p <0.01.
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